Process Optimization with Designed Experiments
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As emphasized by the figure, once the screening of factors is completed, using, for example,
factorial design, process optimization can be achieved through the following steps:



e improvement - approaching optimum by repeated change of factor settings;

» tools: Box-type EVolutionary OPeration (EVOP), Simplex optimization, steepest
ascent method

» determination of optimum - finding optimal factor settings;

» tool: response surface methods like Central Composite Design or Box-Behnken
Design + analysis of response surface



Box-type Evolutionary Operation (Box-EVOP)

Evolutionary Operation was proposed in 1957 by Box as a method of routine plant
operation, carried out by manufacturing personnel with minimum assistance from the
research and development staff, aiming at dealing with modifications of optimal conditions
in a full-scale process, due, for example, to variations in raw materials, environmental
changes or operating personnel.

EVOP consists of systematically introducing small changes in the levels of the operating
factors under consideration, usually employing a 2k design.

The simplest example of Box-EVOP is based on a 80 : . —
22 design, i.e., the one referred to a response

depending on two factors, as shown in the figure o)
on the right: -
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The Box-EVOP principle is explained in the following figure:
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Numbers reported in the figure represent responses obtained for each cycle of the 2?2
design. The direction of largest increase is easily inferred from cycle #1, thus the upper-right
vertex (response = 41.5) becomes the lower-left vertex of cycle #2. Once measurements of
cycle #2 are completed the new direction of largest increase is inferred, thus two vertexes of
cycle #2 are common with cycle #3. Responses obtained with cycle #3 indicate that the
maximum response is observed at the border between cycles #2 and #3.



Simplex optimization

Simplex optimization may be applied when

: : increasing
all the factors are continuous variables.

response

A simplex is a geometrical figure which has k
+ 1 vertices, with k being the number of
factors.

Level of factor Y

In the optimization of two factors the
simplex will therefore be a triangle.

Simplex optimization with constant step sizes
is illustrated by the figure on the right:

Level of factor X

The initial simplex is defined by points labelled 1, 2 and 3. In the first experiments the
response is measured at each of the three combinations of factor levels given by the
vertices of this triangle.

The worst response in this case is found at point 3 and it is logical to suggest that a better
response might be found at a point which is the reflection of 3 with respect to the line
joining 1 and 2, i.e., at point 4. A new simplex is thus defined by points 1, 2 and 4.

Following the same procedure, new combinations of factors to be tested are represented
by points 5, 6, 7 and 8.



The procedure stops at point 8, since the
response obtained at this point, like the one
obtained at point 6, is lower than those
obtained at points 5 and 7.

This feature is typical of a simplex location
close to the maximum of the response
surface, yet, depending on the shape of the
latter, oscillations of this kind may occur even
when the simplex is not close to the
optimum.

Level of factor Y

increasing
response

Level of factor X

In this circumstance improvements can be made sometimes by reflecting the next-worst
point rather than the worst one, to move the simplex in a new direction. In the present
case it would be point 5, thus vertex 8 would be obtained after simplex reflection, with a
response comparable to the one observed for points 5 and 6.

In practice, a point closer to the optimum could be found by considering the point located
halfway on the segment shared by the last two simplexes (the segment between points 5

and 7).




When more than two factors are involved, no graphical representation can be made for the
approach to optimum, thus the procedure is entirely based on calculation.

An example referred to 5 factors is reported in the following table:

Factors Response
A B C D E
Vertex 1 1.0 3.0 2.0 6.0 5.0 7
Vertex 2 6.0 4.3 9.5 6.9 6.0 8
Vertex 3 2.5 11.5 9.5 6.9 6.0 10
\Vertex 4 (rejected) 2.5 4.3 3.5 6.9 6.0 6_J
Vertex 5 2.5 4.3 9.5 9.7 6.0 11
Vertex 6 2.5 4.3 9.5 6.9 9.6

(i) Sum (excluding vertex 4) 14.50 | 27.40 | 40.00 | 36.40 | 32.60
(i) Sum/k (excluding vertex 4) 2.90 5.48 8.00 7.28 6.52

(i) Rejected vertex (i.e. 4) 2.50 4.30 3.50 6.90 6.00
(iv) Displacement = (ii) — (iii) 0.40 1.18 4.50 0.38 0.52
(v) Vertex 7 = (ii) + (iv) 3.30 6.66 | 12.50 7.66 7.04

The simplex has six vertices in this case (note that it is not essential for each factor to have a
different level for each of the vertices).

Vertex 4 is rejected, since it leads to the worst response. The new vertex, 7, is obtained
through steps (i) to (v) shown below in the table.



One of the key aspects of the simplex method is the choice of the initial simplex.
Indeed, if it is too small, too many experiments may be needed to approach the optimum; if
it is too big, the precision of optimum determination might be poor.

One vertex of the initial simplex is usually located in the currently accepted levels of the
factors, then the simplex size can be evaluated in relation to the ranges that factors can

assume realistically.

Actually, a simplex with variable step size can also be adopted.

In the figure points W, M and B represent worst,
medium and best responses obtained with the
first simplex, respectively.

The new point obtained with a fixed-size simplex
is R.

Level of factor Y

If R gives a better response than B (and, then, also
of M), the simplex may be moving in the right
direction, thus the simplex size is doubled and
point R is obtained.

If the response at R’ is lower than that at B, R
could be close to the optimum.

Level of factor X




If the response at point R is worse than those
obtained at points B and M a smaller simplex
(usually having a size that is half of that used
before) can be used when making a reflection
around segment BM, leading to point I.

Level of factor Y

Further evaluations will depend on the response
obtained at point I. |

Level of factor X

The use of variable-size simplex implies that, in the case of two factors, triangles are usually
equilateral in the first steps, then they become isosceles.

The benefit of this approach is using a large simplex in the first steps, to explore the response
surface better, then its size is contracted, to allow a more accurate finding of the optimum.

Notably, the number of experiments required in the simplex method does not increase
rapidly with the number of factors. For this reason, all factors which might reasonably be
thought to have an effect on the response should be included in the optimization.



Simplex optimization has some disadvantages. As always, difficulties may arise if the random
measurement errors are larger than the slope of the response surface near the optimum.

Moreover, the small number of experiments performed, while usually advantageous in
practice, means that little information is gained on the overall shape of the response
surface.

Occasionally response surfaces with more
than one maximum occur, as the one
shown as contour plot in the figure on the
right.

In this case simplex optimization methods
might locate a local optimum such as A,
rather than the true optimum B.

Level of factor ¥

Starting the optimization process in a
second region of the factor space and
verifying if the same optimum conditions
are obtained or not is the preferred
method for checking this issue.

Level of factor X




Method of Steepest Ascent

The method of steepest ascent is a procedure adopted to move sequentially along the path
leading to the maximum increase in the response. Of course, if minimization is desired, then
the procedure corresponds to the method of steepest descent.

At great distances from the optimum,
a first-order model is usually | Response
considered an adequate
approximation of the true surface in a
small region of the factors. This
consideration can be easily
appreciated on a single dimension:

A first-order model is thus used for
fitting:

[

A .
V=P + 2 Bix; ractor
=1



When the optimal response is approached
a first-order model can suffer from a
significant lack-of-fit:

A second-order model may approximate
the real response much better:

A
Response

Response

Factor

»

Factor




When two factors are considered, the
direction of steepest ascent is normal to the
fitted response surface contours.

The line passing through the center of the
region of interest and normal to the fitted
surface contours is considered as the path of
steepest ascent .

The steps along the path are proportional to
the magnitudes of the regression
coefficients.

The experimenter determines the actual
amount of movement along this path based
on process knowledge or other practical
considerations.

Region of fitted
first-order response
surface

Path of
steepest
ascent

Experiments are conducted along the path of steepest ascent until no further increase in
response is observed or until the desired response region is reached.

In the first case, a new first-order model may be fitted, a new direction of steepest ascent
determined, and, if necessary, further experiments conducted in that direction until the

experimenter feels that the process is near to the optimum (or to a desired value).



An example of Process Optimization based on Design of Experiment approaches

The example deals with the development of a silicon nitride (Si;N,) etching process based on
a single-wafer plasma etcher. The process uses C,F as the reactant gas.

It is possible to change the gas flow, the power applied to the cathode, the pressure in the
reactor chamber, and the spacing between the anode and the cathode (gap).

Several response variables would usually be of interest in this process, but in this example
the etch rate for silicon nitride is considered.

MVU TM Plasma PHT
Gas

v to RF generator

Vacuum chamber Four factors

1. gas flow
2. power
- 3. pressure
4. electrode spacing

Plasma

One response

1. etchrate

Vacuum

G.Z.Yin and D.W. lillie, Solid State Technology, May 1987, pp. 127-132



As a first step a 2* factorial design was adopted for screening purposes:

Design  Gap Pressure  C,Fg Flow  Power

Factor A B C . D

Level (cm) (m Torr) (SCCM) (W)

Low ()  0.80 450 125 275

High(+) 120 550 200 325

A B C D Etgh Rate

¥SCCM = Standard Cubic Centimeters Per Minute Run (Gap) (Pressure) (C,F,flow) (Power) (A/min)
1 ~1 ~1 ~1 =T 550
2 1 -1 ~1 (=11 669
3 ~1 1 ~1 -1 1 604
4 1 1 1 I_1 : 650
5 -l -1 1 -1y 633
6 1 -1 1 =11 642
7 -1 1 1 (=11 601
8 1 1 1 =L! 635
9 7 7 T 1037
10 1 ~1 ~1 : 1 : 749
11 -1 1 ~1 | 1 1052
12 1 1 ~1 111 868
13 ~1 ~1 1 I 1075
14 1 1 1 : I : 860
15 -1 1 1 ( 1, 1063
16 1 1 1 L1 729




The model table was thus the following, based on the consideration also of
interactions between two, three and four factors:

Run A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD
| (1) - - . - + + - - + - - + - — +
2 a + - - - - + . - - + & - =
3 b - + - - + - - - - - “+ - + -
4 ab - - + - - - - - - - -~ - - - +
5 ¢ - — - + - - + - -+ - - - + + =
b ac + - = - + - - - —~ + + - - + e
7 be - - - - - + = o + — S + _ +
8 abc - - - - - - - - - = & - = =
9 d - - + - + + - + - - + - + + -

10 ad - - - - - - + + - - — - + +

11 bd - + - - + - + - - - ra -

12 abd + - + - - - - + + - - - -

13 cd - - + - - - - . - - + - - +

14 acd + - - - + - - + + - - + + - -

15 bcd - + - - - + - . - - + " + -

16 abcd + + + - - - + - - + - - - +

Since no replicates were performed it was not possible to estimate, on a statistical basis,
the significance of each factor.



However, in the analysis of variance the three- and four-factor interactions could be pooled
to form the error mean square (this is an acceptable assumption provided that those
interactions are not significant).

Source of
Variation Sum of Squares Degrees of Freedom Mean Square Fy
(A 41.310.563 ! 41.310.563 f\?n.—zr?,
B 10.563 1 10.563 - 1
C 217.563 I 217.563 L |
(p> 374,850.063 ! 374,850.063 ,\ITT}’
AB 248.063 | 248.063 < |
AC 2.475.063 1 2.475.063 1.21
(51} 94,402.563 1 99.402.563 £ 46.34,
BC 7.700.063 | 71.700.063 3.78
BD 1.563 I 1.563 <1
cD 18.063 1 18.063 <1
Error 10,186.815 d 2.037.363
Total 531.420.938 15

As inferred from F, values, factors A and D and their interaction (AD) seem to have a
significant effect on the response.



Responses obtained for different combinations of the four factors can be visualized as in the
following figure:
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As inferred from the previous figure, and as 1075 F
shown directly in the figure on the right, the - D+
effect of increasing the electrode gap on the etch I=
rate is opposite, according to the value of power: "%
© D+
The interaction between the two factors is thus S
relevant. . — D-
550 = D-
- +
Gap, A

Consequently, high etch rates are obtained at high power settings and narrow gap widths.

Since two of the four factors, i.e., the electrode gap (x,) and the power (x,), significantly
affect etch rate, a model based only on these main effects can be adopted:

v=776.0625—-50.8125x, +153.0625x,

N

y=b,+bx,+b,X,



The contour plot resulting from this

. . . 375 e« (1163)
model is shown in the figure on the
right:
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Since the engineers needed to run the process at an etch rate of 1100-1150 A/min, the
method of steepest ascent was adopted to move away from the original region of
experimentation to increase the etch rate.



An examination of the plot shows that, to
move away from the design center, i.e., the
point (x, = 0, x,= 0), a path having a slope of
153.0625/(-50.8125) = -3 has to be adopted:

Since the engineers decided to use 25 W of
power as the basic step size, and this value is
equivalent to a step of 1 in the coded variable
X, a change of Ax,/(-3) = -0.33 for the x;
variable, equivalent to -0.067 cm in the
electrode gap, was applied.
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The maximum etch rate observed along the path of steepest ascent was 1163 A/min,
compatible with the process requirements, and was achieved for a power of 375 W and an

electrode gap of 0.8 cm.




Response Surface Method (RSM)

Response surface methodology (RSM) is a collection of mathematical and statistical
techniques that are useful for modeling and analysis in applications where a response of
interest is influenced by several variables and the objective is to optimize this response.

To illustrate the general idea of RSM, suppose that a chemical engineer wishes to find the
levels of reaction temperature (x,) and reaction time (x,) that maximize the yield (y) of a
process. The process yield is a function of the levels of temperature and time:

v=f(x.x0)+e€

The surface represented by:

E(y) = f(x. %)

where E(y) denotes the expected value of the response, is called a response surface.



The response surface may be represented
graphically as in the figure on the right, i.e.,
as a plot in a three-dimensional space:

Alternatively, a contour of the response

surface may be represented in the (x;, x,)
plane:

Each contour corresponds to a particular
height of the response surface.
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Examples of response surfaces displaying a maximum (a), no maximum (b) or a plateau (c),
respectively, are shown in the following figure: :
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Since the relationship between the response and the independent variables is unknown in
most RSM problems, the first step of the approach is finding a suitable approximation of
the relationship between the response and the factors.

A low-order polynomial is usually employed at this aim.

Specifically, a first-order model:
y=PBo+Bix; + Byxy - By +€

or a second-order model, if there is curvature in the system:

\—ﬁﬂ+2ﬁ1+z M +zzﬁﬂ

j=] 1< j=2

are adopted.

The method of least squares is used to estimate the parameters in the approximating
polynomials.

If the fitted surface is an adequate approximation of the true response function, the
analysis of the fitted surface will be approximately equivalent to the analysis of the actual
system.



When the starting point on the response surface is remote from the optimum, like in one
of the figures shown before, there is little curvature in the system and the first-order
model can be appropriate, since the goal is leading the experimenter rapidly and
efficiently to the vicinity of the optimum.

Once the region of the optimum has been found, a more elaborate model, such as the
second-order model, may be employed, and an analysis may be performed to locate the
optimum.

It is worth noting that RSM can guarantee only convergence to a local optimum.

Two main types of designs are typically related to RSM:

1) Central Composite Designs (CCD)
2) Box-Behnken designs



Central Composite Designs (CCD)

Central composite designs (also called Box-Wilson designs) are obtained from the
combination of two designs.
When 2 factors are involved the following designs are combined:

®
® .
o <+ @ ® o
® .
Complete factorial design ®
2 factors, 2 levels 4 tip - star

v



In particular, along with the complete 22 factorial design, a star design, based on the
combination of an experiment at the center of the experimental domain and a certain
number (4, 6, 8) of experiments located symmetrically around it, is performed.

More than one experiment is usually performed in the center of the design, in order to
estimate the response variance and the model validity.

The type of CCD depends on the choice of levels related to the star design:

-1 +1 -1 +1 -1 +1
- t J
\
-\-\._\__._ﬂ_.-"
Circumscribed Internal or inscribed Face-centered
CCC Ccl CCF

Notably, only the CCC has points located outside the (-1, 1) interval. CCC and CCI require 5
levels of each factor, whereas CCF only 3.



When 3 factors are considered, the following design types can be obtained:
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In this case a six tip-star design is combined with the factorial design.



The combinations of levels to be explored for CCC designs based on two or three factors
(variables) are reported in the following table:

Two vanables Three vanables
X X, Y, X Yy
| -1 -1 1 Factonal design e T N Factonal design
| -1 | -1 -1 1
! 1] | - ! -1 1
L1 ___ 1, | | -1
1~ 1 -1 [ |
0 0 Centre pomts I 1 -1 I
————— I ;) | 1
| @ 0 Axial points - Jd -1 _ 1,
0 0 I 0 0 0 Centre pomt
I 0 = {0 |
I o a | T T Axaal ponts
O el = I . 0 o |
I ~a o |
I o a o I
| 0 0 -a |
R R—

15 .
10 FE—
-
0.3 - —1+—1
i J o
P
03 o e
10 & | .
-
3 -




The number of experiments is given by 2¥ + 2k + n,, where k is the number of factors and n,
represents the number of replicates obtained for the central point:

Number of vanables 2 3 | >
Number of experiments i the factonal design 1 8 16 32
Number of axial points 4 6 8 10
Value of a 1.414 1.682 2.000 2.378

The value of a can be inferred from specific formulas. In the case of CCC designs :
o = N4

where N is the number of experiments included in the factorial design.

If k =2, N=4and N4 =4Y4 = (4Y/2)1/2 = 212 =1 414;

if k=3, N=8and N4 =84 =(8%/2)1/2 = 2 8282 =1.682, etc.



Box-Behnken Designs

In 1960 Box and Behnken proposed designs allowing a direct implementation of second-

degree models.

All the factors have three levels: =1, 0, and 1. These designs are easy to carry out and have
the property of sequentiality, i.e., it is possible to study k factors and still have the option to
add new ones without losing the results from the trials already carried out.

The experimental points are placed not at the
corners but in the middle of the edges and in
the center of a cube (or hypercube).

This arrangement means that all experimental
points are equidistant from the center of the
study domain, that is, on a sphere (or
hypersphere), depending on the number of
dimensions. Center points are added to the
hypersphere center.

In the figure the representation of a Box-Behnken design

| 4«—— Factor{ ——» +

— 44— Factor2 ——» +

+

el

Factor 3

g

referred to 3 factors,

corresponding to a cube, is shown. A sphere protruding through each face of the cube and
including all points (but the central one) on its surface is also shown.




Comparison between Surface Response Designs

CCC designs (5 levels per factor)

Provide high quality predictions over the entire design space but require
factor settings outside the range of the factors in the factorial part.

Factor spacings can be reduced to ensure that o values for each coded
factor correspond to feasible (reasonable) levels.

CCl designs (5 levels per factor)

Use only points within the factor ranges originally specified but do not
provide predictions over the entire design space with quality comparable
to that of CCC designs.

CCF designs (3 levels per factor)

Provide relatively high quality predictions over the entire design space
and do not require points outside the original factor range; however, they
give poor precision for estimating pure quadratic coefficients.

Box-Behnken designs (3 levels per factor)

=1 £1
L}
L4 -
a
5] - =— =
o <>
=
-1 +1
+ %
=1 +1

The lack of points in the corners of the design space may be useful when combinations of

extreme values shoud be avoided.




A comparison between CCC/CClI,

described in the following table:

CCF and Box-Behnken designs for three factors is

CCC (CCI) I CCF | Box-Behnken |
Rep| X | X || X5 [Rep|Xy|Xy|Xs|Rep|X;|X;)|Xs
(1 -1 -1 ) -1 1111 jf-1-1]0]
(L 41 -1 J -1 1 [f-1f-1 1 j+1]-1]0 ]
(1) -1+ f -1 [ rJ-rfrf-1fn J-1)+1]0]
HHEYEY R RN EEIE .|+1'|+1 0
(L 1 -1+ J-rjj+affn Jajof-1]
[T+ [ -1 [ #1 [ 1 "1+ 1 [=1o][-1]
1] -1 |+ |+ f 1 [[-af+nf+1] 1 |- o [f+1]
(1] +1 [ +1 [ +1 [ 1 [+1f+1]+1]] 1 +1]0 [+1]
[ 1 ]-1682] o [ o [ 1 [-1]ofo] 1 Jo]-1]-1]
[ 1]1682] 0 | o J 1 ]+1ojJoff1Jojf+1f-1]
(1] o J1682] o |1 JoJ-1fo0f 1 [O]-1]+1]
(1] o [1es2] o [ 1 o]+ 1 [o]n]*]
(1] o ]| o |-1682] 1 JoJof-1 3 [o]o]o]
N 5 N 2
6 o o[ o JeJofofo I 1|
| Total Runs =20 |Tntamuns-zn|Tuta|Runs-1=|

For three factors the Box-Behnken design offers some advantage, since it requires a fewer
number of runs. For 4 or more factors this advantage disappears.



An example of use of Central Composite Design in a response surface method

The use of CCD in a response surface method can be described by reconsidering the
optimization of the silicon nitride etch process on a single-wafer plasma etcher.

As shown before, using the steepest ascent approach, a gap between electrodes of 0.8 cm
and a power of 375 W were found to provide etching rates (1163 A/min) near the desired
operating region for the process (1100-1150 A/min).

The experimenters decided to explore the maximum rate region more closely by running an
experiment that would support a second-order response surface model, based on a central
composite design, with four replicates in the central point. Etch uniformity was also

evaluated:

Gap Power Coded Variables Etch Rate Uniformity
Observation (cm) (W) X, Xy yi(A/m) ya(A/m)
I 0.600 350.0 —=1.000 -1.000 1054.0 79.6
2 1.000 350.0 1.000 —1.000 936.0 81.3
3 0.600 400.0 —1.000 1.000 1179.0 78.5
4 1.000 400.0 1.000 1.000 1417.0 97.7
5 0.517 375.0 -1.414 0.000 1049.0 76.4
6 1.083 375.0 1.414 0.000 1287.0 88.1
7 0.800 339.6 0.000 -1.414 927.0 78.5
8 0.800 4104 0.000 1.414 1345.0 92.3
9 0.800 375.0 0.000 0.000 1151.0 90.1
10 0.800 375.0 0.000 0.000 1150.0 88.3
11 0.800 375.0 0.000 0.000 1177.0 88.0
12 0.800 375.0 0.000 0.000 1196.0 90.1

Xy

+2 -
$(0, 1.414)
(-1, 1) (1, 1)
(-1.414,0) (1.414, 0)
2 (0, 0) T2
(-1, -1) (1, -1)
$(0, -1.414)
_2F




The complete second order model for the etch rate was:

P, =1168.50+57.07x, +149.64x, —1.62x7 —17.63x; +89.00x,x,

The ANOVA table for this model (obtained with the Minitab software) was:

Source DF Seq SS Adj SS Adj Ms F P
Regression 5 238898 238898 47780 38.59 0.000
Linear 2 205202 205202 102601 82.87 0.000
2 2012 2012 1006 0.81 0.487
Interaction 1 31684 31684 31684 25.59 0.002
Residual Error (3 7429 7429 1238

Lack-of-Fit 3 5952 5952 1984 4.03 0.141
Pure Error 3 1477 1477 492

Total 11 246327

The contribution due to square terms was thus found to be not statistically significant.



This result was confirmed by the t-test performed on model coefficients:

Term Coef SE Coef T P
Constant 1168.50 17.59 66.417 0.000
A 57.07 12.44 4.588 0.004
B 149.64 12.44 12.029 0.000
A*RA -1.62 13.91 -0.117 0.911
B*B -17.63 13.91 -1.267 0.252
A*B 89.00 17.59 5.059 0.002

A first - order model with interaction was thus considered:

Vy = 11557+ 57.1x; +149.7x, + 89 x,x,

Based on the resulting contour plot, all
combinations of variables x, and x, included in
the region emphasized in the figure were
found to provide an etch rate included in the
1100 — 1150 A/min range.

The best combination of variables determined
previously and the path leading towards it are
also indicated in the figure.
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Turning to the etch uniformity, meant as the standard deviation of the thickness of the
material layer applied to the wafer surface, the equation for the second-order model was:

§, =89.275 + 4.681x, +4.352x, —3.400x; — 1.825x; +4.375x,x,

The ANOVA and the t-statistics for the model terms tables were the following:

Source DF Seq SS Adj SS Adj Ms F P

Regression 5 486 .085 486 .085 97.217 75.13 0.000

Linear 2 326.799 326.799 163.399 126.28 0.000

Square 2 8B2.724 82.724 41.362 31.97 0.001

Interaction 1 76 .563 T6.563 76.563 59.17 0.000

Residual Error 6 7.764 7.764 1.294

Lack-of-Fit 3 4.996 4.996 1.665 1.81 0.320

Pure Error 2.768 2.768 0.923

Total 11 493,849
Term Coef SE Coef T P
Constant B9 . 275 0.5688 156.963 0.000
A 4.681 0.4022 11.639 0.000
B 4.352 0.4022 10.821 0.000
A*D -3.400 0.4496 -7.561 0.000
B*B -1.825 0.4496 -4 .,059 0.007
A*B 4.375 0.5688 7.692 0.000

Since all terms were significant, the experimenters confirmed the quadratic model.



The following response surface and contour plot were thus obtained:
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Since only uniformity values not exceeding 80
could be considered acceptable, an overlay
with the contour plot referred to etch rate was
adopted to find the best compromise for the
two responses:

The unshaded region in the overlay plot was
thus found as the one providing an acceptable
process performance.
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A further example of use of Central Composite Design for RSM

The synthesis of an amine from a ketone was complicated by the generation of a by-product.
Three two-level factors were considered to deal with this problem:

1. Ketone concentration (x,)
2. Concentration of the scavenger used to remove water (x,)
3. Temperature (x,)

Two responses were considered:

1. Amine percent yield (minimum acceptable value: 85%)
2. By-product percentage (maximum acceptable value: 10%)

A Central Composite Design for three factors was adopted.

A second-order model including quadratic terms and also interactions between couple of
factors was considered:

k k
y=PBo+ Z Bixi + Z Zﬁ.—'jxixj + Z Biix; + €
i=1 |



The model matrix was the following:

23 factorial
design

-

axial points «
central point «

m X1 X5 X3 X1 X2 X3 XeXo | Xi X3 | Xp X3
1 -1.0000 | -1.0000 | -1.0000 | 1 1 1 1 1 1
1 -1.0000 | -1.0000 | 1.0000 | 1 1 1 1 -1 -1
1 -1.0000 | 1.0000 | -1.0000}) 1 1 1 -1 1 -1
1 -1.0000 | 1.0000 | 1.0000 | 1 1 1 -1 -1 1
1 1.0000 | -1.0000 | -1.0000¢§ 1 1 1 -1 -1 1
1 1.0000 | -1.0000 | 1.0000 | 1 1 1 -1 1 -1
1 1.0000 | 1.0000 | -1.0000¢} 1 1 1 1 -1 -1
1 1.0000 | 1.0000 | 1.0000 | 1 1 1 1 1 1
1 -1.6818 | O 0 2.82843 | 0 0 0 0 0
1 1.6818 | 0O 0 2.82843 | 0 0 0 0 0
1 0 -1.6818 | O 0 2.82843 | 0 0 0 0
1 0 1.6818 | O 0 2.82843 | 0 0 0 0
1 0 0 -1.6818 | O 0 2.82843 | 0 0 0
1 0 0 1.6818 | O 0 2.82843 | 0 0 0
1 0 0 0 0 0 0 0 0 0




Experimental data and model coefficients were the following:

Amine yield | By-product yield
81.3 10.5
85.2 5.3
91.4 7.9
91.2 4.7
50.4 2.7
72.4 6.7
77.2 5.7
93.2 11.7
85.3 1.7
60.9 1.
79.2 10.3
97.1 14.3
70.3 4.7
85.8 5.1
85.1 2.

Amine vyield By-product yield

bo | 84.938 1.911
b, | -7.098 -0.203
b, | 6.869 0.844
bs | 4.962 0.166
bi1 | -4.018 -0.107
b,>, | 1.303 3.764
bsz | -2.268 1.148
bix | 3.938 1.4

b3 | 4.288 2.3

bos | -1.263 0.5




The overlay of contour plots was performed first by considering the lower level of

temperature:

Water scavenger conce ntration
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In the figure red lines refer to amine yield,
green lines to the by-product percentage.

The pink-colored zone includes almost
satisfying combinations of factors, with
amine yield comprised between 80 and 85%
and by-product yields between 8 and 10%.



The overlay of contour plots at the higher level of temperature was the following:

Water scavenger concentration
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In this case a region corresponding to amine
yields higher than 90% and by-product
percentages lower than 10% could be found.

These conditions were generally better than
those obtained at lower temperature.



An example of use of Box-Behnken design in a response surface method

The effect of pH, temperature and substrate (p-phenylenediamine, PPD) concentration on
the kinetics of reaction rate under catalysis by the enzyme ceruloplasmin (CP) (a copper-
including enzyme able to oxidize Fe?* into Fe3* in vivo) was preliminarily evaluated using a 23
factorial design, for screening purposes.

pH and PPD concentration were found to have an influence on the reaction kinetics,
whereas the variation of temperature did not have a significant effect, thus a Box-Behnken

design was performed at a fixed temperature of 37°C.

pH and the concentrations of PPD and CP were selected as 3-level factors:

Factors |Low |High |Units |Continuous
[PPD] (0.5 |27.3 |mM |Yes
pH 48 |64 Yes
[CP] 0,7 |26.0 |mg/L |[Yes

[ -

15 runs were performed, considering 3 replicates in the central point of the design.

The following results, expressed as reaction rates (min), were obtained:



Run [PPD] pH [CP] Reaction rate
(mM) (mg/L)  (min™)

1 0.5 4.8 13.35 6.58

2 27.3 5.6 0.7 5.27

3 27.3 5.6 26.0 37.2

4 13.9 6.4 26.0 33.63

5 0.5 5.6 26.0 14.95

6* 13.9 5.6 13.35 23.8

7 13.9 4.8 26.0 26.02

8 13.9 4.8 0.7 1.0

9 27.3 6.4 13.35 20.67

10 0.5 5.6 0.7 1.87

11 13.9 6.4 0.7 4.4

12* 13.9 5.6 13.35 24.43

13* 13.9 5.6 13.35 23.29

14 0.5 6.4 13.35 8.21

15 27.3 4.8 13.35 12.67

* Replicates in the central point




Calculations of estimated effects with the corresponding standard error were performed
using the Statgraphics software:

Effect Estimate |Stnd. Error |V.ILF.
average |23.86 1.08637

A:[PPD] |11,05 1,33052 1.0
B:pH 5.145 1,33052 1.0
C:[CP] 248 1,33052 1.0

AA -13,2825 |[1,95848 1.01111
AB 3.185 1,88164 1.0

AC 0.425 1,88164 1.0

BB -10,3725 [1,95848 1.01111
BC 2.135 1,88164 1.0

cC -4,7925 |1,95848 1.01111

Note that the already defined Variance Inflation Factor, V.I.F. , is equal to 1/(1—R2j) where sz
represents the square of correlation coefficient obtained from an ordinary least square
regression in which variable X; is modeled as a function of all the other explanatory
variables.

A V.I.LF. close to unity implies that sz is close to O, i.e., that variable X; is almost not
correlated at all with other variables.



This is a snapshot of the Statgraphics 18 software related to the Design of Experiments:

mm STATGRAPHICS 18 - doewiz rsm.sgp — O *

File Edit Plot Describe Compare Relate Forecast SPC DOE  SnapStats!!  Statlets  Tools  Rinterface  View Window Help

TEHER FERs A B ErENd el ?Ade B

@ DataBook = '*ﬁ 'i-!,bc *‘:* *‘T‘ﬁ. 1‘_,\\ &l E Text fort $iZEZJ J # ticks: | Harizontal H-ariz Y-axiz Z-avig
’ StatAdvisor El E| Lﬂg . B i< '1&", Q Label | i Row M RQY I K QK
StatGalle = |
E_E i Analyze Experiment - strength EI@
o | StatReport
athEporter Analysis of Variance for strength ~
l StatFolio Comments Source Sum of Squares | Df | Mean Square Manddardized Parsto Chard far cirength
Statlog A:sealing temperature 16.6388 1 |16.6388 L S S L B ¢
o
% Experimental Design Wiza B:cooling bar temperature 0.10448 1 | 0.10448 - caanng tempsraturs E
B . Vi . . B2
%E Analyze Experiment - strer C:polyethelene 14.225 1 |14.225 . -l | |
A 8.31094 1 [8.31094 s
AB 0.98 1 |0.98 « | ]
AC 2.0 1 [2.0 «= | [
= ]
BE 15.648 1 |15.648 hotng bar temperaturs | ]
BC 0.18 1 |0.18 B ] r s 3 :
Bandardized affecd
cC 18.998% 1 |18.9%8%
Total error 11.8678 10 | 1.18678
Total (corr.) 82.17 19
R-squared = B5.557 percent
R-squared (adjusted for d.f.) = 72.5584 percent
Standard Error of Est. = 1.08939
Mean absolute error = 0.560033
Durbin-Watson statistic = 1.59492 (P=0.1342)
Lag 1 residual autocorrelation = 0.188771
The StatAdvisor
The AMOVA table partitions the varability in strength into separate craling leamerakare
each effect by comparing the mean square against an estimate of tl ,
£ > . .
Use the right mouse button to select options




The ANOVA table and standardized Pareto Chart were also obtained with the same software:

Source Sum of Squares |Df |Mean Square |F-Ratio |P-Value
A:[PPD] 244,205 1 |244.205 68.97 0.0004
B:pH 52,9421 1 52,9421 14,95 0.0118
C:[CP] 1230,08 1 |1230,08 347.42 |0.0000
AA 162.854 1 |162.854 46.00 0.0011
AB 10,1442 1 10,1442 2.87 0.1513
AC 88.8306 1 |88.8306 25,09 0.0041
BB 09.3127 1 99.3127 28.05 0.0032
BC 4,55823 1 |4.55823 1.29 0.3080
ccC 21,2013 1 21,2013 5.99 0.0581
Total error 17,7029 5 |3.54058
Total (corr.) |[1901.49 14
Standardized Pareto Chart
c:[cP] | | | 0+
A[PPD] | | | e -

AA

- —

acl ]

BpH|[ | ]

cc| I

A |[]

BC|[]

0] 4 8 12 16 20
Standardized effect




The following regression coefficients were obtained:

Coefficient |Estimate
constant -252.298
A:[PPD] 0.237488
B:pH 90,5019
C:[CP] 0.402914
AA -0,0369862
AB 0.148554
AC 0.0278007
BB -8.10352
BC 0.105484
CC -0,0149745

The equation of the fitted model for the reaction rate was, then:

-252,298 + 0,237488*[PPD] + 90,5019*pH + 0.402914*[CP] - 0,0369862*[PPD]"2 +
0,148554*[PPD]*pH + 0,0278007*[PPD]*[CP] - 8,10352*pH"2 +
0.105484*pH*[CP] - 0.0149745*[CP]"2



Since three variables were selected, response surfaces could be represented as 3D-plots

only after fixing one of them:
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The optimum value and the path of steepest ascent could be finally determined:

Optimum value = 38,9715

Factor |Low |High |Optimum
[PPD] [0,5 |27.3 |25.0236
pH 4.8 6.4 |5.98213
[CP] ]0.7 |26.0 |26.0

Path of Steepest Ascent

Predicted
[PPD] |pH [CP] reaction rate
(mM) (mg/L) |(min-1)
13,9 |5.6 13.35 23.84
149 |5,62787 |15.4641 |26,3747
15,9 5.65576 |17.5644 |28.8149
16.9 5,68369 |[19.6529 |31,1638
17,9 5,71165 (21,7314 (33,4238
18.9 5,73966 |23.8014 |35,5972
19.9 5,76773 (25,8641 |[37,6858
20,9 5,79584 |27.9207 (39,6911
21,9 5,82401 29,9721 (41,6143
229 5.85223 |32.0191 |43.,4566
23,9 5.88051 [34.0624 |45,2187




Use of Minitab 18 to perform calculations on designs of experiments for RSM

Calculations on RSM designs of experiments can be performed by Minitab 18 after accessing
the Stat > DOE > Response Surface path, and choosing the Create Response Surface Design...
command:

[ Minitab - Untitled
File Edit Data Calc | Stat Graph Editor Tools Window Help Assistant
- E|!EE| Basic Statistics » |@9“LT 0 [F mﬁmu_] “|
“ j Regression » —L” | “ T ON o |1M
ANOVA 4
L Session DOE » Screening »
Control Charts » Factorial »
Quality Tools » Response Surface 3| # Create Response Surface Design...
Reliability/Survival » Mixture » Define Custom Response Surface Design...
Multivariate » Taguchi P | #F Select Optimal Design...
Time Series g Madify Design... #  Analyze Response Surface Design...
Tables ’ [ Display Design.. YV Predict
Nonparametrics 4
Equivalence Tests » FHZisiEl M-
Power and Sample Size » L Lertolr HoE
Surface Plot..,
Overlaid Contour Plot...
Response Optimizer...




The type of design can be selected in the corresponding window:

Create Response Surface Design

Create Response Surface Design: Display Available Designs

Available Response Surface Designs

Type of Design .
(" Central composite (2 to 10 conti factors) Design Continuous Factors
p o0 10 continuous factors 2(3]4[5/6 78910
(@ Box-Behnken (3,4,5,6,7.9, or 10 continuous factors) N unblocked 13] 20 31 52 90 152
Central composite full 14 20 30 54 90 160
central o hatf | UMblocked 32 53 88 154
ALt blocked 33 54 90 160
Mumber of continuous factors: I 3 vl Display Available Designs... l/’ . unblocked 90 | 156
[ Central composite quarter blocked = a3
Mumber of categorical factors: I 0 - l Designs... Factors... L unblocked 158
[ g ] [ Central composite eighth blocked 160
Dy{ons... | Results... | ] unblocked 15| 27 |46 | 54 | 62 130 170
Box-Behnken blocked 27 46 | 54 | 62 130 170
Help | oK Cancel | b |
Create Response Surface Design: Factors *
Create Response Surface Design: Designs > - E— ‘ o High
A A | 0.5 27.3
Mumber of center points Mumber of replicates: I 1 B B 4.8 6.4
‘e Default: 3 ] C C 0.7 26
[ Block on replicates
{ Custom: I
Mumber of blocks:l 1 vl
Help | oK Cancel
Help | oK | Cancel




As an example, if the Box-Behnken design is selected with 3 continuous factors, whose low
and high limits correspond to those of the ceruloplasmin kinetics experiment, the following
table of factors is created in the Minitab worksheet and responses can then be inserted:

] Worksheet 2 #+

+ 1 c2 c3 c4 c5 C6 c7 c8

StdOrder RunOrder| PtType @ Blocks PPD pH CP  Response
1 13 1 0 1 15.9 5.6 13.35 23.80
2 14 2 0 1 13.9 5.6 13.35 24.43
3 15 3 0 1 13.9 5.6 13.35 23.29
4 11 4 2 1 13.9 4.8 26.00 26.02
5 5 5 2 1 0.5 5.6 0.70 1.87
6 12 6 2 1 13.9 6.4 26.00 33.63
7 7 7 2 1 0.5 5.6 26.00 14.95
8 6 8 2 1 27.3 5.6 0.70 5.27
9 9 9 2 1 13.9 48 0.70 1.00
10 2 10 2 1 27.3 4.8 13.35 12.67
11 4 11 2 1 27.3 6.4 13.35 20.67
12 3 12 2 1 0.5 6.4 13.35 8.21
13 8 13 2 1 27.3 5.6 26.00 37.20
14 1 14 2 1 0.5 4.8 13.35 6.58
15 10 15 2 1 13.9 6.4 0.70 4.40

Note that generic names of factors, A, B and C can be replaced by the actual names in the
corresponding column headings of the worksheet.



The Response Surface Design can be analysed using the Analyze Response Surface Design...
command in the Stat > DOE > Response Surface path. The corresponding window enables
the selection of the response column and setting different conditions for analysis:

Analyze Response Surface Design X Analyze Response Surface Design: Terms X
C8  Response Eesponses: Include the following terms: FuII quadratic v I
Response
Available Terms: Selected Terms:
B:pH
C:CP

S

2l o]

<<

Options... | Stepwise...l

Select | Graphs... | Storage... |
Help | oK | Cancel | [ Include blocks in the madel
/ Help | oK I Cancel
Analyze Response Surface Design: Results X
Display of results: -
v Method

[v Analysis of variance

[v Madel summary

[V Cosficents: - [oefault coeficents | As usual with Minitab, different types of Results
|7 egression equation: eparate equation for each set of factor levels hd . . .

Rogression eqaton: [seprate et o echsetoffocur s | can be selected to be displayed in the Session
[¥" Fits and diagnostics: |only for unusual observations |

window, once calculations are made, after clicking

e x| ot | the OK window in the main window.




Here are the main results that can be found in the Session window after calculations:

Box-Behnken Design Response Surface Regression: Response versus PPD; pH; CP
Design Summary Analysis of Variance
Factors: 3 Replicates: 1 Source DF  AdiSS AdjMS F-value P-Value

Base runs: 15 Total runs: 15

Base blocks: 1 Total blocks: 1 Maodel 8 188455 209.39 38.61 0.000
Linear 3 152002 50067 14266  0.000
Center points: 3 PPD 1 24421 244.21 68.35 0.000
pH 1 5325 5325 1490  0.012
Design Table (randomized) cp 1 123157 123157 34471 0.000
Run Bk A B € Square 3 25212 2404 2352 0.002
1 1 0 0 0 PPD"PPD 1 16200 16200 45.34 0.001
2 1 0 0 0 pH pH 1 9922 9922 2777  0.003
i 1 g ? ? CPCP 1 2116 2116 582 0059
s 1 9 0 4 2-Way Interaction 3 10347 3447 9.65 0.016
c 1 0 1 1 PPD pH 1 1004 1014 284 0153
7 1 -1 0 1 PRDCP 1 88.483 88.83 24.86 0.004
g 1 1 0 -1 pH"CP 1 4.43 443 1.24 0316
g1 0 Error 5 17.86 3.57
1? 1 1 1 g Lack-of-Fit 3 1721 574 1759 0054
12 11 1 0 Pure Error 2 0.65 0.33
13 1 1 0 1 Total 14 190242
14 T -1 -1 0
15 1 0 1 -1
Coded Coefficients
Term Coef SECoef T-Value P-Value WIF
Model Summary Constant  23.84 109 21.85  0.000
< R-sq R-sqladj) R-sg(pred) PPD 5525  0.668 827  0.000 1.00
1.89017 99.08%  97.37% 85.45% PH 2380 D668 286 0012 100
cP 12407 0668 1857  0.000 1.00
PPD*PPD -6.524 0984  -673 0001 1.01
) o ] pH*pH -5.184 0984  -527 0003 1.01
Regression Equation in Uncoded Units cp*cP -2394 0084  -243 0059 101
Response = -252.3 + 0.235 PPD + 90.5 pH + 0.411 CP - 0.03689 PPD*PPD - 8.10 pH*pH PPD*pH  1.593  0.945 169 0153 1.00
- 0.01496 CP*CP + 0.1486 PPD*pH + 0,02780 PPD*CP + 0.1040 pH*CP PPD*CP 4713 0945 499  0.004 1.00

pH*"CP 1.053 0.945 1.11 0318 .00




As for screening designs, graphical representations of results, either as contour or as surface

plots, can be made using the Stat > DOE > Response Surface menu:

O EEECEL R R

3 TOON ° LA

i Surfare Pl

# Define Custom Response Surface Design...
"l* Select Optimal Design...

# Create Response Surface Design...

H Analyze Response Surface Design... /

LY Predict..

m Minitab - Esercizio Minitab su disegno Box Behnken.MPJ
File Edit Data Calc |Stat Graph Editor Tools Window Help Assistant
| | L= | % B Basic Statistics 4
IFigure Region j 4 Regression 4 j ‘ X | Q “
ANOVA »
Lr Sessm: DOE 4 Screening »
 pHTF
Error Control Charts 4 Factorial »
Lack-of-Fit Quality Tools » Response Surface »
Pure Errar
Total Reliability/Survival 14 Mixture 4
Multivariate » Taguchi »
Model Summai Time Series » %, Modify Design..
s FResg Tables > . .
189017 99.06% ) Dyl Pl
MNonparametrics »
- Equivalence Tests »
Coded Coeffici g
Power and Sample Size »

- Factorial Plots...
Contour Plot.,
Surface Plot...

erlaid Contour Plot...

Response Optimizer...

Contour Plot X

Response -

Response:

Variables:

* Select a pair of variables for a single plot

X Axis: [PFD |
¥ Asis: [pH |

" Generate plots for all pairs of continuous variables

¥ In separate panels of the same graph

" On separate graphs

Contours... |I Seftings... I
| !%Mode\...l

Surface Plot
Response: hd
Variables:
@ Select a pair of variables for a single plot
X Axis: |PFD ~|

Y Axis: IpH LI
" Generate plots for all pairs of continuous variables
¥ In separate panels of the same graph

" On separate graphs

Settings... Options...

| View Model... |

» Surface Plot: Settings

Hold continuous variables at:

Variable [
P [13.35

Satting

Hold categorical variables at:

Cancel

Help | oK |

Cancel

| Help oK

Options...
Help oK |/ Cancel |
Contour Plot: Settings

Hold continuous variables at:

Variable | Setting
cp [13.35
Hold categorical variables at:

F
Help | oK Cancel




Here are examples of surface and contour plots obtained for data referred to the
ceruloplasmin kinetics, fixing one of the three factors (in the specific case, [CP] = 13.35
mg/L, i.e., the average between the maximum and the minimum value adopted for this
factor):

6 Surface Plot of Response vs pt; PPD [ESHECE > " Contour Plot of Response vs pH; PPD EI
3D Graph Tools P
su[vMus HEEE HEQ’ab Contour Plot of Response vs pH; PPD
Rotate Around X Axis
Rotate around X axs Surface Plot of Response vs pH; PPD Response
= 10
g 0 - 15
W5 - 20
W20 - 25
6.00 ] = 25
Hold values
575 | cP 1335
30 =
5.50 1
Response ,,
i@ 6.5 5.25 4
/ 6.0
0 i
\4 pH 5.00
a
¥ 10 5.0
20
PPD 30
" Effects Pareto for Response E’
Pareto Chart of the Standardized Effects
(response is Response; a = 0.05)
Factor Name
A PPD
B pH
c =3

The Pareto Chart for standardized effects is
obtained as a further graph, obtained upon
appropriate selection inside the Graphs sub-
window in the Analyze Response Surface |

Design window. Y et




Example of an entire optimization procedure

After performing a 22 factorial design for screening purposes, a time of 35 min and a
temperature of 155 °F were found as the best combination of the two factors, leading to a

reaction yield of 40%.
Since this result was considered far from the optimum, the steepest ascent approach was

adopted to search for an improvement.

The region of exploration to fit the first-order model was 30-40 min of reaction time and
150-160 °F for temperature.

Variables were coded using the following equations:

/ Reaction temperature

_§-35 & — 155
M—T Xy = 5

Reaction time
\




The following experimental design was adopted, based on a 22 factorial design augmented
by five center points, obtained on the operating conditions found after the screening step:

Natural Coded

Variables Variables Response
& & X A2 y
30 150 I 39.3
30 160 | 1 40.0
40 150 : 1 11 409
40 160 N S 415
35 155 Fﬁ"'T}': 40.3
15 155 I 0 0 I 40.5
35 155 0 0 40.7
35 155 : 0 01 402
35 155 L 0 ol 40.6

The resulting first-order model (with no interaction) was:

y = 4044 + 0.775x, + 0.325x;,



The adequacy of the model was investigated through different steps:
1. Estimate of error from replicated measurements: &% = .043()

2. Contribution of interaction between factors x; and x,:

By = (1 X 393) + (1 X 41.5) + (=1 X 40.0) + (-1 X 409)] = L(=0.1) = —0,025

3. Significance of interaction between factors x; and x,:

(—0.1y°

nteraction 00025
SSumsraion = —, — = 0.0025 p = SSmeraction _

&2 ~0.0430

= 0.053

Since the F value is much lower than the critical value F, , at a = 0.05, the interaction can be
considered not significant.



4. Check for quadratic effects (curvature):

This check consists in comparing the average of the four responses obtained in the factorial
design:

Yr =(39.3+40.0+40.9+41.5)/4 = 40.425

with the average response obtained in the centre of the design:

Ve = (40.3 +40.5 + 40.7+ 40.2+ 40.6)/5 = 40.46

The difference between these values represents a measure of the model curvature:

Vr—Ye = 40425-40.46=-0.035
The following sum of squares is related to the pure quadratic contribution:

_ npnc(yr — ¥ _ (4)(5)(—0.035)*

ure Quadratic ~ = 0.0027
SSpure Quad hp + ne 4 + 5

where n; and n. represent the number of data in the factorial part and in the center of the
design, respectively.



Since the realization of the F statistic:

— SSPure Quadratic _ 0.0027

F= 52 o040 0003

is much lower than the F, , critical value at o = 0.05, quadratic effects can be considered not
significant.

The following ANOVA table provides a summary of all contributions:

Sum of Degrees of Mean
Source of_k’ariaq’gr_i_ B Squares Freedom Square Fo P-Value
Model (B,, B>) 2.8250 2 1.4125 47.83 0.0002
Residual 0.1772 6
(Interaction) (0.0025) 1 0.0025 ooss 08215 )
(Pure quadratic) (0.0027) 1 0.0027 0.063 @
(Pure error) (0.1720) 4 0.0430
Total 3.0022 8

Interaction and quadratic effects are thus not significant (note that the corresponding P-
Values are much higher than a) and a first order dependence is ascertained.

The check indicates that we are still far from the optimum, where such a dependence is not
reasonable, thus an improvement step, e.g., based on the steepest ascent approach, is
required.



Steepest ascent approach

X2 A
40.0 41.5

+1 -

O B \ ‘\\\

40.44 (av.),
- EEE 140.9
I I I .
-1 0 +1

Based on the results obtained from the first
measurements, i.e., on the model found for the
response:

y = 4044 + 0.775x, + 0.325x,

a potential path for the increase of response is the
one indicated with the blue arrow in the figure, i.e.,
the normal to red lines, representing combinations
of variables with the same response in the contour
plot.

It can be easily seen that a +1 variation in the x, coded variable, i.e., a 5 min increase in the
reaction time, corresponds to an increase of 0.42 (0.325/0.775) for the x, variable, when

moving along the blue arrow.

In terms of the actual variable, the reaction temperature, a 0.42 increase corresponds to

about 2 °F:

& 155
X2 5

) A& =5xAx, =5x042=2.1°F



The steepest ascent experiment can thus be described by the following table:

Coded Variables Natural Variables Response
Steps X X & £ ¥

Origin 0 0 35 155

A 1.00 0.42 5 2

Origin + A 1.00 0.42 40 157 41.0
Origin + 24 2.00 0.84 45 159 429
Origin + 9A 9.00 1,78 80 173 77.6
Origin + 10A 10.00 4.20 85 175 80.3
Origin + 114 11.00 4.62 90 179 76.2
Origin + 124 12.00 5.04 95 181 75.1

This graph emphasizes the evolution of
response, with a maximum (80.3) reached
after 10 increases of variables:

It is now clear that a new model has to be
adopted to fit data in a range around 85
min of reaction time and 175 °F of

temperature.

yield

90




If another first-order model was adopted, just as a trial, the following equations would then
be required for variable coding:

& — 85 . & — 175
x — ———=e e
Data obtained by considering a design like Natural Coded
the one adopted before would be: Variables Vanables Response
3 & X, X y
80 170 -1 -1 76.5
80 180 -1 | 77.0
The new first-order model would then be: %0 170 : - 78.0
90 180 1 1 79.5
85 175 0 0 799
$§ = 78.97 + 1.00x, + 0.50x; 85 175 0 0 80.3
85 175 0 0 80.0
85 175 0 0 79.7
85 175 0 0 79.8

The analysis of variance for this model, including checks for interaction and for purely
guadratic contribution, would be performed as before:




Sum of Degrees of Mean

Source of Variation Squares Freedom Square Fy P-Value
Regression 5.00 2
Residual 11.1200 6

(Interactior (0.2500) 1 0.2500 4.72 0.0955
(10.6580) 1 10.6580 201.09

(Pure error) (0.2120) 4 0.0530
Total 16.1200 8

As apparent, the purely quadratic contribution is significant, as expected, since there has
been an approach to the actual maximum of the response surface.

A second-order response surface has then to be considered to complete the optimization.



A second-order model like the following one:

k k
y= B+ Z Bix; + 2 Bixi + 22 Bjxix; + €
=] i=1 i<j
is usually suitable to find the optimum set of operating conditions when curvature has to be
also considered.

Generally speaking, the set of x,, x,,...x, factors that optimize the predicted response is the
one leading all partial derivatives of response with respect to variables to become equal to 0.
The resulting point in the k-dimensional space is called the stationary point.

response surface contour plot




In principle, a stationary point might also correspond to a point of minimum response:

asa -

.0 =154 =x1] 05

response surface contour plot

g

or to a saddle point:
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response surface contour plot




Contour plots, easily generated by computer software for response surface analysis, play a
very important role in the study of the response surface, enabling a characterization of the
shape of the surface and the location of the optimum with a reasonable precision.

A mathematical solution for the location of the stationary point can be obtained by writing
the second-order model in matrix notation:

= ﬁ[} -+ K'b + K'B]i

with:
F-’l‘u— _I?J -Qna ﬂl?fl R 61&1"2-'
« = | b = B B = Baa, 3 Bail2 and x’ being the transpose of x
| Xk _ _ﬁi‘_ | Sym. ﬂu N

As apparent, b is a (k x 1) vector including first-order regression coefficients, B is a (k x k)
symmetric matrix, whose main diagonal elements correspond to pure quadratic coefficients,
whereas off-diagonal elements correspond to one-half of the mixed quadratic coefficients.

The stationary point can be found by equating to 0 the derivative of the expected response
with respect to the elements of vector x’:

(;ﬁ A ‘ ) f
§I=h+ZBx=l}»xS=*%B_lb B =B+ xb—ixBB 'b = B+ 3x'b



Response surface approach starting from a central composite design

In the specific example, a central composite design (CCD) was adopted to proceed with
the response surface approach:

-1.1)

*2

+2-

(0, 1.414)

(1. 1

| e

-2 (-1.414,0)

=1,-1)

(0,00

(0, -1.414)

-2

{1.414,0) +2

11.-1

Natural
Variables Coded Variables Response
£ & X X3 ¥ (yield)
80 170 -1 -1 76.5
80 180 -1 1 77.0
90 170 1 -1 78.0
90 180 1 1 79.5
85 175 0 0 79.9
85 175 0 0 80.3
85 175 0 0 80.0
85 175 0 0 79.7
85 175 0 0 79.8
92.07 175 1414 0 78.4
77.93 175 —-1414 0 75.6
85 182.07 0 1.414 78.5
85 167.93 0 -1.414 77.0

The blue, red and green rectangles in the table represent, respectively, the 22 factorial
design, the 5 replicates obtained in the design center and the four-tip star design, with o
= NV, where N is the number of experiments in the factorial part, thus a = (4)¥/4 = 1.414,



The ANOVA table is the following:

Sum of Mean F

Source Squares DF Square Value Prob > F
Model 28.25 5 5.65 79.85 <0.0001
A 7.92 1 7.92 111.93 <0.0001
B 2,12 1 2,12 30.01 0.0009
A? 13.18 1 13.18 186.22 <0.0001
B? 6.97 1 6.97 98.56 <0.0001
AB 0.256 1 0.25 3.53 0.1022

Residual 0.50 7 0.071
Lack of Fit 0.28 3 0.094 1.78 0.2897

Pure Error 0.21 4 0.053

Cor Total 28.74 12

The following table summarizes the model coefficients and related information:

Coefficient Standard 95% ClI 95% CI
Factor Estimate DF Error Low High VIF
Intercept 79.94 1 0.12 79.66 80.22
A-time 0.99 1 0.094 0.77 1.22 1.00
B-temp 0.52 1 0.094 0.29 0.74 1.00
A? —1.38 1 0.10 -1.61 -1.14 1.02
B? -1.00 1 0.10 -1.24 -0.76 1.02
AB 0.25 1 0.13 —0.064 0.56 1.00




The final equations of the model, in terms of coded and actual factors, respectively, are:

Yield (y) =79.94 + 0.995 A+ 0.515 B -1.376 A>- 1.001 B2+ 0.250 AB

Yield (y)=-1430.5 + 7.8 time + 13.3 temp - 0.055 time? - 0.04 temp?+ 0.01 time temp

They correspond to the following response surface and contour plot:

1821 —
75.00
80.21 179.7 /

177.4 |+

77.99

/ ."'\.,

/i ‘ AR

i, O 1‘ AR
75.77 — 4 ,p ‘\\: \\\\

Yield

175.0

Temperature

172.6 —
76.00

1703 A\ 4
75.00°\ 77.00 77.00

74.00 \ . / d
167.9 L\ | | 1 o | 76,'00

187.9°77.93 7793 8029 8264 8500 8736 8971 92.07
Time

response surface contour plot




Coded co-ordinates corresponding to the maximum response (stationary point) can be
obtained through calculations on matrices, as shown before:

b [0.995] B [—1.376 0.1250]

0.515 0.1250 —1.001

x = —iB-p = —1 —0.7345 —0.0917 || 0.995 _ 0.389
s 2 21 —0.0917 -1.0096 (| 0.515 0.306
In order to find the actual values of variables corresponding to the maximum response these

coordinates have to be uncoded:

gl - 85 . 52 - 175
5 0.306 = 3

4

& = 86.95 = §7 min & = 176.53 = 176.5 °F

0.389 =

These co-ordinates can be inferred approximately from a visual examination of the contour
plot and, with a slightly greater effort, of the response surface.



Main applications of Design of Experiments

Chemical synthesis

1. Synthetic steps

2. Work up and separation

3. Reagents, solvents, catalysts

4. Structure-related reactivity and properties

Biotechnological industry

1. Pharmaceutics: formulations for drug delivery

2. Media development and optimization

3. Biochemistry

4. Separation (HPLC), assay development and optimization
5. Pharmacology: drug design

6. Process (e.g., fermentation) optimization and control;

Cosmetic industry

1. Processes, production, separation, cleaning
2. Formulations: shampoos, nail polish, creams, perfumes, soaps, powders
3. Molecular structure: high potency, low toxicity, allergenicity



Drug industry

1. Pharmaceutics: formulations for drug release, hardness of pills

2. Organic chemistry: synthesis, drug design

3. Analytical chemistry: separation (HPLC) resolution and speed

4. Pharmacology

5. Process optimization and control: synthesis, fermentation, separations

Process control

1. Process optimization and control (yield, purity, throughput time, pollution, energy
consumption)

2. Product quality and performance (material strength, warp, color, taste, odour)

3. Product stability versus process variation



Software available for Design of Experiments

Software Company and reference Comments

Design-Expert Stat-Ease Inc., htp://www.statease.com/ Dok software

Fusion Pro S-Matrix Corporation, http://www.smatrix.com/ Dok software

Modde Umetrics, http:/ /www.umetrics.com/modde DoE software

Nemrod-W LPRAI, Marseille, France Windows 05 only. Optimal designs
http://www.nemrodw.com/html-US/design-of-experiments.html

Unscrambler CAMO AS, http://www.camo.com/ Chemometric and DoE software

Virtual Column

|MP
Matlab

MINITAB
Origin

R

SPSS
Statgraphics
STATISTICA

ACROSS and the University of Tasmania, http://www.virtualcolumn.com

SAS Institute Inc., http:/ /www.sas.com/
The Mathworks Inc., http://www.mathworks.com.au

Minitab Inc., http://www.minitab.com

Microcal Software, http://www.originlab.com/

Revolution Analytics http://www.revolutionanalytics.com/
IBM, http://www-01.ibm.com/software/analytics/spss/
Statpoint Technologies, http://www.statgraphics.com/
StatSoft, http://www.statsoft.com

Chromatographic modelling software

General statistical software,

General mathematical and computing
software, Statistics Toolbox contains Dok
routines.

General statistical software

General data analysis and graphing software
Open source general software

General statistical software

General statistical software

General statistical software

Adapted from: D.B. Hibbert, J. Chromatogr. B, 910 (2012) 2-13.




Useful bibliographic material on DoE

M. Forina, Fondamenta per la Chimica Analitica e-book ISBN 9788890406461

T. Lundstedt et al., Experimental design and optimization, Chemometrics and Intelligent
Laboratory Systems, 42 (1998) 3—40

A. Khuri, S. Muchopadhyay, Response Surface Methodology — advanced review, WIREs
Comp. Stat., 2 (2010) 128-149

J. Goupy, L. Creighton, Introduction to Design of Experiments with JMP® Examples, 3™
Edition, 2007, SAS Institute Inc.

R.G. Brereton, Chemometrics: data analysis for the laboratory and chemical plant, 2003,
John Wiley & Sons Ltd

R. Carlson, Design and Optimization in Organic Synthesis, 1992, Elsevier
D.C. Montgomery, Design and analysis of experiments, 2012, John Wiley & Sons Ltd

D.C. Montgomery, Introduction to Statistical Quality Control, 6% Edition, 2008, John Wiley &
Sons Ltd
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