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As emphasized by the figure, once the screening of factors is completed, using, for example, 
factorial design, process optimization can be achieved through the following steps:

Factor #1

Factor #2



• improvement - approaching optimum by repeated change of factor settings; 

 tools: Box-type EVolutionary OPeration (EVOP), Simplex optimization, steepest 
ascent method

• determination of optimum - finding optimal factor settings; 

 tool: response surface methods like Central Composite Design or Box-Behnken 
Design + analysis of response surface



Box-type Evolutionary Operation (Box-EVOP)

Evolutionary Operation was proposed in 1957 by Box as a method of routine plant 
operation, carried out by manufacturing personnel with minimum assistance from the 
research and development staff, aiming at dealing with modifications of optimal conditions 
in a full-scale process, due, for example, to variations in raw materials, environmental 
changes or operating personnel.

EVOP consists of systematically introducing small changes in the levels of the operating 
factors under consideration, usually employing a 2k design.

The simplest example of Box-EVOP is based on a 
22 design, i.e., the one referred to a response 
depending on two factors, as shown in the figure 
on the right:

Each square in the figure indicates the four 
measurements performed for each cycle of the 
22 design.

In the example the highest response was 
reached with cycle #5:
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The Box-EVOP principle is explained in the following figure:

Numbers reported in the figure represent responses obtained for each cycle of the 22 
design. The direction of largest increase is easily inferred from cycle #1, thus the upper-right 
vertex (response = 41.5) becomes the lower-left vertex of cycle #2. Once measurements of 
cycle #2 are completed the new direction of largest increase is inferred, thus two vertexes of 
cycle #2 are common with cycle #3. Responses obtained with cycle #3 indicate that the 
maximum response is observed at the border between cycles #2 and #3.
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Simplex optimization

Simplex optimization may be applied when 
all the factors are continuous variables. 

A simplex is a geometrical figure which has k 
+ 1 vertices, with k being the number of 
factors. 

In the optimization of two factors the 
simplex will therefore be a triangle.

Simplex optimization with constant step sizes 
is illustrated by the figure on the right: 

The initial simplex is defined by points labelled 1, 2 and 3. In the first experiments the 
response is measured at each of the three combinations of factor levels given by the 
vertices of this triangle.
The worst response in this case is found at point 3 and it is logical to suggest that a better 
response might be found at a point which is the reflection of 3 with respect to the line 
joining 1 and 2, i.e., at point 4. A new simplex is thus defined by points 1, 2 and 4.

Following the same procedure, new combinations of factors to be tested are represented
by points 5, 6, 7 and 8.

increasing
response



The procedure stops at point 8, since the
response obtained at this point, like the one
obtained at point 6, is lower than those
obtained at points 5 and 7.

This feature is typical of a simplex location
close to the maximum of the response
surface, yet, depending on the shape of the 
latter, oscillations of this kind may occur even 
when the simplex is not close to the 
optimum.

increasing
response

In this circumstance improvements can be made sometimes by reflecting the next-worst 
point rather than the worst one, to move the simplex in a new direction. In the present 
case it would be point 5, thus vertex 8’ would be obtained after simplex reflection, with a 
response comparable to the one observed for points 5 and 6.

In practice, a point closer to the optimum could be found by considering the point located 
halfway on the segment shared by the last two simplexes (the segment between points 5 
and 7).

8’



When more than two factors are involved, no graphical representation can be made for the
approach to optimum, thus the procedure is entirely based on calculation.

An example referred to 5 factors is reported in the following table:

The simplex has six vertices in this case (note that it is not essential for each factor to have a 
different level for each of the vertices).
Vertex 4 is rejected, since it leads to the worst response. The new vertex, 7, is obtained
through steps (i) to (v) shown below in the table.



One of the key aspects of the simplex method is the choice of the initial simplex.
Indeed, if it is too small, too many experiments may be needed to approach the optimum; if 
it is too big, the precision of optimum determination might be poor.

One vertex of the initial simplex is usually located in the currently accepted levels of the 
factors, then the simplex size can be evaluated in relation to the ranges that factors can 
assume realistically.

Actually, a simplex with variable step size can also be adopted.

In the figure points W, M and B represent worst,
medium and best responses obtained with the
first simplex, respectively.
The new point obtained with a fixed-size simplex
is R.

If R gives a better response than B (and, then, also
of M), the simplex may be moving in the right
direction, thus the simplex size is doubled and
point R’ is obtained.
If the response at R’ is lower than that at B, R
could be close to the optimum.



If the response at point R is worse than those
obtained at points B and M a smaller simplex
(usually having a size that is half of that used
before) can be used when making a reflection
around segment BM, leading to point I.

Further evaluations will depend on the response
obtained at point I.

The use of variable-size simplex implies that, in the case of two factors, triangles are usually
equilateral in the first steps, then they become isosceles.

The benefit of this approach is using a large simplex in the first steps, to explore the response
surface better, then its size is contracted, to allow a more accurate finding of the optimum.

Notably, the number of experiments required in the simplex method does not increase
rapidly with the number of factors. For this reason, all factors which might reasonably be 
thought to have an effect on the response should be included in the optimization.



Simplex optimization has some disadvantages. As always, difficulties may arise if the random 
measurement errors are larger than the slope of the response surface near the optimum.

Moreover, the small number of experiments performed, while usually advantageous in 
practice, means that little information is gained on the overall shape of the response 
surface. 

Occasionally response surfaces with more 
than one maximum occur, as the one 
shown as contour plot in the figure on the 
right.

In this case simplex optimization methods 
might locate a local optimum such as A,  
rather than the true optimum B. 

Starting the optimization process in a 
second region of the factor space and 
verifying if the same optimum conditions 
are obtained or not is the preferred 
method for checking this issue.



Method of Steepest Ascent

The method of steepest ascent is a procedure adopted to move sequentially along the path 
leading to the maximum increase in the response. Of course, if minimization is desired, then 
the procedure corresponds to the method of steepest descent. 

At great distances from the optimum,
a first-order model is usually
considered an adequate
approximation of the true surface in a
small region of the factors. This
consideration can be easily
appreciated on a single dimension:

A first-order model is thus used for
fitting:

Far away from 
optimum:
first order 

model

Factor

Response



When the optimal response is approached
a first-order model can suffer from a
significant lack-of-fit:

A second-order model may approximate
the real response much better:

Factor

Response

Factor

Response



When two factors are considered, the 
direction of steepest ascent is normal to the 
fitted response surface contours. 

The line passing through the center of the 
region of interest and normal to the fitted 
surface contours is considered as the path of 
steepest ascent . 
The steps along the path are proportional to 
the magnitudes of the regression 
coefficients. 

The experimenter determines the actual 
amount of movement along this path based 
on process knowledge or other practical 
considerations.

Experiments are conducted along the path of steepest ascent until no further increase in 
response is observed or until the desired response region is reached.  

In the first case, a new first-order model may be fitted, a new direction of steepest ascent 
determined, and, if necessary, further experiments conducted in that direction until the 
experimenter feels that the process is near to the optimum (or to a desired value).

x1

x2



An example of Process Optimization based on Design of Experiment approaches

The example deals with the development of a silicon nitride (Si3N4) etching process based on 
a single-wafer plasma etcher. The process uses C2F6 as the reactant gas. 
It is possible to change the gas flow, the power applied to the cathode, the pressure in the 
reactor chamber, and the spacing between the anode and the cathode (gap). 
Several response variables would usually be of interest in this process, but in this example 
the etch rate for silicon nitride is considered.

Four factors

1. gas flow
2. power
3. pressure 
4. electrode spacing

One response

1. etch rate

G.Z. Yin and D.W. Jillie, Solid State Technology, May 1987, pp. 127-132



As a first step a 24 factorial design was adopted for screening purposes:

*SCCM = Standard Cubic Centimeters Per Minute



The model table was thus the following, based on the consideration also of 
interactions between two, three and four factors:

Since no replicates were performed it was not possible to estimate, on a statistical basis,
the significance of each factor.



However, in the analysis of variance the three- and four-factor interactions could be pooled 
to form the error mean square (this is an acceptable assumption provided that those
interactions are not significant).

As inferred from F0 values, factors A and D and their interaction (AD) seem to have a
significant effect on the response.



Responses obtained for different combinations of the four factors can be visualized as in the
following figure:

The effects of factors and of the interactions
were calculated as usual:

As suggested by ANOVA, the most relevant
factors were A, the electrode gap, and D, the
power.



As inferred from the previous figure, and as 
shown directly in the figure on the right, the 
effect of increasing the electrode gap on the etch 
rate is opposite, according to the value of power:

The interaction between the two factors is thus 
relevant.

Consequently, high etch rates are obtained at high power settings and narrow gap widths.

Since two of the four factors, i.e., the electrode gap (x1) and the power (x4), significantly 
affect etch rate, a model based only on these main effects can be adopted:

44110 xbxbbŷ ++=
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The contour plot resulting from this 
model is shown in the figure on the 
right:

The original region of experimentation, 
delimited by gaps between 0.8 and 1.2 
cm and powers between 275 and 325 
W, is evidenced in the figure.

Notably, the maximum etch rate 
obtained within the original region of 
experimentation, was approximately 
980 Å/min. 

Since the engineers needed to run the process at an etch rate of 1100–1150 Å/min, the 
method of steepest ascent was adopted to move away from the original region of 
experimentation to increase the etch rate.
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An examination of the plot shows that, to 
move away from the design center, i.e., the 
point (x1 = 0, x4 = 0), a path having a slope of 
153.0625/(-50.8125) ≅ -3 has to be adopted:

Since the engineers decided to use 25 W of
power as the basic step size, and this value is
equivalent to a step of 1 in the coded variable
x4, a change of ∆x4/(-3) = -0.33 for the x1
variable, equivalent to -0.067 cm in the
electrode gap, was applied.

The maximum etch rate observed along the path of steepest ascent was 1163 Å/min,
compatible with the process requirements, and was achieved for a power of 375 W and an
electrode gap of 0.8 cm.



Response Surface Method (RSM)

Response surface methodology (RSM) is a collection of mathematical and statistical 
techniques that are useful for modeling and analysis in applications where a response of 
interest is influenced by several variables and the objective is to optimize this response.

To illustrate the general idea of RSM, suppose that a chemical engineer wishes to find the 
levels of reaction temperature (x1) and reaction time (x2) that maximize the yield (y) of a 
process. The process yield is a function of the levels of temperature and time:

The surface represented by:

where E(y) denotes the expected value of the response, is called a response surface. 



The response surface may be represented 
graphically as in the figure on the right, i.e., 
as a plot in a three-dimensional space: 

Alternatively, a contour of the response 
surface may be represented in the (x1, x2) 
plane: 

Each contour corresponds to a particular 
height of the response surface. Current



Examples of response surfaces displaying a maximum (a), no maximum (b) or a plateau (c), 
respectively, are shown in the following figure: : 



Since the relationship between the response and the independent variables is unknown in 
most RSM problems, the first step of the approach is finding a suitable approximation of 
the relationship between the response and the factors.

A low-order polynomial is usually employed at this aim.

Specifically, a first-order model:

or a second-order model, if there is curvature in the system:

are adopted.

The method of least squares is used to estimate the parameters in the approximating 
polynomials.
If the fitted surface is an adequate approximation of the true response function, the 
analysis of the fitted surface will be approximately equivalent to the analysis of the actual 
system.



When the starting point on the response surface is remote from the optimum, like in one 
of the figures shown before, there is little curvature in the system and the first-order 
model can be appropriate, since the goal is leading the experimenter rapidly and 
efficiently to the vicinity of the optimum.

Once the region of the optimum has been found, a more elaborate model, such as the 
second-order model, may be employed, and an analysis may be performed to locate the 
optimum.

It is worth noting that RSM can guarantee only convergence to a local optimum.

Two main types of designs are typically related to RSM:

1) Central Composite Designs (CCD)

2) Box-Behnken designs



Central Composite Designs (CCD)
Central composite designs (also called Box-Wilson designs) are obtained from the
combination of two designs.
When 2 factors are involved the following designs are combined:

Complete factorial design
2 factors, 2 levels 4 tip - star

+

x1

x2



In particular, along with the complete 22 factorial design, a star design, based on the
combination of an experiment at the center of the experimental domain and a certain
number (4, 6, 8) of experiments located symmetrically around it, is performed.

More than one experiment is usually performed in the center of the design, in order to
estimate the response variance and the model validity.

The type of CCD depends on the choice of levels related to the star design:

-1         +1 -1          +1 -1            +1

Circumscribed
CCC

Internal or inscribed
CCI

Face-centered
CCF

Notably, only the CCC has points located outside the (-1, 1) interval. CCC and CCI require 5
levels of each factor, whereas CCF only 3.



When 3 factors are considered, the following design types can be obtained:

Circumscribed
CCC

Internal or inscribed
CCI

Face-centered
CCF

In this case a six tip-star design is combined with the factorial design.



The combinations of levels to be explored for CCC designs based on two or three factors
(variables) are reported in the following table:

α α



The number of experiments is given by 2k + 2k + n0, where k is the number of factors and n0
represents the number of replicates obtained for the central point:

The value of α can be inferred from specific formulas. In the case of CCC designs :

α = N1/4

where N is the number of experiments included in the factorial design.

If k = 2, N = 4 and N1/4 = 41/4 = (41/2) 1/2 = 21/2 = 1.414;

if k = 3, N = 8 and N1/4 = 81/4 = (81/2) 1/2 = 2.8281/2 = 1.682, etc.



Box-Behnken Designs

In 1960 Box and Behnken proposed designs allowing a direct implementation of second- 
degree models. 

All the factors have three levels: –1, 0, and 1. These designs are easy to carry out and have 
the property of sequentiality, i.e., it is possible to study k factors and still have the option to 
add new ones without losing the results from the trials already carried out.

The experimental points are placed not at the 
corners but in the middle of the edges and in 
the center of a cube (or hypercube). 

This arrangement means that all experimental 
points are equidistant from the center of the 
study domain, that is, on a sphere (or 
hypersphere), depending on the number of 
dimensions. Center points are added to the 
hypersphere center.

In the figure the representation of a Box-Behnken design referred to 3 factors,
corresponding to a cube, is shown. A sphere protruding through each face of the cube and
including all points (but the central one) on its surface is also shown.



Comparison between Surface Response Designs

CCC designs (5 levels per factor)

Provide high quality predictions over the entire design space but require
factor settings outside the range of the factors in the factorial part.
Factor spacings can be reduced to ensure that ±α values for each coded
factor correspond to feasible (reasonable) levels.

CCI designs (5 levels per factor)

Use only points within the factor ranges originally specified but do not
provide predictions over the entire design space with quality comparable
to that of CCC designs.

CCF designs (3 levels per factor)

Provide relatively high quality predictions over the entire design space
and do not require points outside the original factor range; however, they
give poor precision for estimating pure quadratic coefficients.

α

Box-Behnken designs (3 levels per factor)

The lack of points in the corners of the design space may be useful when combinations of
extreme values shoud be avoided.



A comparison between CCC/CCI, CCF and Box-Behnken designs for three factors is
described in the following table:

For three factors the Box-Behnken design offers some advantage, since it requires a fewer 
number of runs. For 4 or more factors this advantage disappears.



An example of use of Central Composite Design in a response surface method

The use of CCD in a response surface method can be described by reconsidering the 
optimization of the silicon nitride etch process on a single-wafer plasma etcher. 

As shown before, using the steepest ascent approach, a gap between electrodes of 0.8 cm
and a power of 375 W were found to provide etching rates (1163 Å/min) near the desired
operating region for the process (1100-1150 Å/min).

The experimenters decided to explore the maximum rate region more closely by running an 
experiment that would support a second-order response surface model, based on a central 
composite design, with four replicates in the central point. Etch uniformity was also 
evaluated:



The complete second order model for the etch rate was:

The ANOVA table for this model (obtained with the Minitab software) was:

The contribution due to square terms was thus found to be not statistically significant.



This result was confirmed by the t-test performed on model coefficients:

A first - order model with interaction was thus considered:

Based on the resulting contour plot, all
combinations of variables x1 and x4 included in
the region emphasized in the figure were
found to provide an etch rate included in the
1100 – 1150 Å/min range.

The best combination of variables determined
previously and the path leading towards it are
also indicated in the figure. X1

X 4 



Turning to the etch uniformity, meant as the standard deviation of the thickness of the
material layer applied to the wafer surface, the equation for the second-order model was:

The ANOVA and the t-statistics for the model terms tables were the following:

Since all terms were significant, the experimenters confirmed the quadratic model.



The following response surface and contour plot were thus obtained:

response surface contour plot

Since only uniformity values not exceeding 80
could be considered acceptable, an overlay
with the contour plot referred to etch rate was
adopted to find the best compromise for the
two responses:

The unshaded region in the overlay plot was
thus found as the one providing an acceptable
process performance.



A further example of use of Central Composite Design for RSM

The synthesis of an amine from a ketone was complicated by the generation of a by-product.
Three two-level factors were considered to deal with this problem:

1. Ketone concentration (x1)
2. Concentration of the scavenger used to remove water (x2)
3. Temperature (x3)

Two responses were considered:

1. Amine percent yield (minimum acceptable value: 85%)
2. By-product percentage (maximum acceptable value: 10%)

A Central Composite Design for three factors was adopted.

A second-order model including quadratic terms and also interactions between couple of
factors was considered:



The model matrix was the following:

23 factorial
design

axial points

central point



Experimental data and model coefficients were the following:

Amine yield By-product yield
Amine yield By-product yield



The overlay of contour plots was performed first by considering the lower level of
temperature:
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In the figure red lines refer to amine yield,
green lines to the by-product percentage.

The pink-colored zone includes almost
satisfying combinations of factors, with
amine yield comprised between 80 and 85%
and by-product yields between 8 and 10%.



The overlay of contour plots at the higher level of temperature was the following:
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In this case a region corresponding to amine
yields higher than 90% and by-product
percentages lower than 10% could be found.

These conditions were generally better than
those obtained at lower temperature.



An example of use of Box-Behnken design in a response surface method

The effect of pH, temperature and substrate (p-phenylenediamine, PPD) concentration on
the kinetics of reaction rate under catalysis by the enzyme ceruloplasmin (CP) (a copper-
including enzyme able to oxidize Fe2+ into Fe3+ in vivo) was preliminarily evaluated using a 23

factorial design, for screening purposes.

pH and PPD concentration were found to have an influence on the reaction kinetics,
whereas the variation of temperature did not have a significant effect, thus a Box-Behnken
design was performed at a fixed temperature of 37°C.

pH and the concentrations of PPD and CP were selected as 3-level factors:

15 runs were performed, considering 3 replicates in the central point of the design.

The following results, expressed as reaction rates (min-1), were obtained:





Calculations of estimated effects with the corresponding standard error were performed
using the Statgraphics software:

Note that the already defined Variance Inflation Factor, V.I.F. , is equal to 1/(1-R2
j) where R2

j
represents the square of correlation coefficient obtained from an ordinary least square
regression in which variable Xj is modeled as a function of all the other explanatory
variables.

A V.I.F. close to unity implies that R2
j is close to 0, i.e., that variable Xj is almost not

correlated at all with other variables.



This is a snapshot of the Statgraphics 18 software related to the Design of Experiments:



The ANOVA table and standardized Pareto Chart were also obtained with the same software:



The following regression coefficients were obtained:

The equation of the fitted model for the reaction rate was, then:



Since three variables were selected, response surfaces could be represented as 3D-plots
only after fixing one of them:



The optimum value and the path of steepest ascent could be finally determined:



Use of Minitab 18 to perform calculations on designs of experiments for RSM

Calculations on RSM designs of experiments can be performed by Minitab 18 after accessing
the Stat > DOE > Response Surface path, and choosing the Create Response Surface Design…
command:



The type of design can be selected in the corresponding window:



As an example, if the Box-Behnken design is selected with 3 continuous factors, whose low
and high limits correspond to those of the ceruloplasmin kinetics experiment, the following
table of factors is created in the Minitab worksheet and responses can then be inserted:

Note that generic names of factors, A, B and C can be replaced by the actual names in the
corresponding column headings of the worksheet.



The Response Surface Design can be analysed using the Analyze Response Surface Design…
command in the Stat > DOE > Response Surface path. The corresponding window enables
the selection of the response column and setting different conditions for analysis:

As usual with Minitab, different types of Results
can be selected to be displayed in the Session
window, once calculations are made, after clicking
the OK window in the main window.



Here are the main results that can be found in the Session window after calculations:



As for screening designs, graphical representations of results, either as contour or as surface
plots, can be made using the Stat > DOE > Response Surface menu:



Here are examples of surface and contour plots obtained for data referred to the
ceruloplasmin kinetics, fixing one of the three factors (in the specific case, [CP] = 13.35
mg/L, i.e., the average between the maximum and the minimum value adopted for this
factor):

The Pareto Chart for standardized effects is
obtained as a further graph, obtained upon
appropriate selection inside the Graphs sub-
window in the Analyze Response Surface
Design window.



Example of an entire optimization procedure

After performing a 22 factorial design for screening purposes, a time of 35 min and a
temperature of 155 °F were found as the best combination of the two factors, leading to a
reaction yield of 40%.
Since this result was considered far from the optimum, the steepest ascent approach was
adopted to search for an improvement.

The region of exploration to fit the first-order model was 30-40 min of reaction time and
150-160 °F for temperature.

Variables were coded using the following equations:



The following experimental design was adopted, based on a 22 factorial design augmented
by five center points, obtained on the operating conditions found after the screening step:

The resulting first-order model (with no interaction) was:



The adequacy of the model was investigated through different steps:

1. Estimate of error from replicated measurements:

2. Contribution of interaction between factors x1 and x2:

3. Significance of interaction between factors x1 and x2:

Since the F value is much lower than the critical value F1,4 at α = 0.05, the interaction can be
considered not significant.



4. Check for quadratic effects (curvature):

This check consists in comparing the average of the four responses obtained in the factorial
design:

with the average response obtained in the centre of the design:

The difference between these values represents a measure of the model curvature:

The following sum of squares is related to the pure quadratic contribution:

where nF and nC represent the number of data in the factorial part and in the center of the
design, respectively.

Fy = (39.3+40.0+40.9+41.5)/4 = 40.425

Cy = (40.3 + 40.5 + 40.7+ 40.2+ 40.6)/5 = 40.46



Since the realization of the F statistic:

is much lower than the F1,4 critical value at α = 0.05, quadratic effects can be considered not
significant.

The following ANOVA table provides a summary of all contributions:

Interaction and quadratic effects are thus not significant (note that the corresponding P-
Values are much higher than α) and a first order dependence is ascertained.

The check indicates that we are still far from the optimum, where such a dependence is not
reasonable, thus an improvement step, e.g., based on the steepest ascent approach, is
required.



Steepest ascent approach

Based on the results obtained from the first
measurements, i.e., on the model found for the
response:

a potential path for the increase of response is the
one indicated with the blue arrow in the figure, i.e.,
the normal to red lines, representing combinations
of variables with the same response in the contour
plot.

x1

x2 41.5

40.9

40.0

39.3
-1

-1 +1

+1

0

0
40.44 (av.)

It can be easily seen that a +1 variation in the x1 coded variable, i.e., a 5 min increase in the
reaction time, corresponds to an increase of 0.42 (0.325/0.775) for the x2 variable, when
moving along the blue arrow.

In terms of the actual variable, the reaction temperature, a 0.42 increase corresponds to
about 2 °F:

Fx °=×=∆×=∆ 1.242.055 22ξ



The steepest ascent experiment can thus be described by the following table:

This graph emphasizes the evolution of
response, with a maximum (80.3) reached
after 10 increases of variables:

It is now clear that a new model has to be
adopted to fit data in a range around 85
min of reaction time and 175 °F of
temperature.
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If another first-order model was adopted, just as a trial, the following equations would then
be required for variable coding:

Data obtained by considering a design like
the one adopted before would be:

The new first-order model would then be:

The analysis of variance for this model, including checks for interaction and for purely
quadratic contribution, would be performed as before:



As apparent, the purely quadratic contribution is significant, as expected, since there has
been an approach to the actual maximum of the response surface.

A second-order response surface has then to be considered to complete the optimization.



A second-order model like the following one:

is usually suitable to find the optimum set of operating conditions when curvature has to be
also considered.

Generally speaking, the set of x1, x2,…xk factors that optimize the predicted response is the
one leading all partial derivatives of response with respect to variables to become equal to 0.
The resulting point in the k-dimensional space is called the stationary point.

response surface contour plot



In principle, a stationary point might also correspond to a point of minimum response:

or to a saddle point:

response surface contour plot

response surface contour plot



Contour plots, easily generated by computer software for response surface analysis, play a
very important role in the study of the response surface, enabling a characterization of the
shape of the surface and the location of the optimum with a reasonable precision.

A mathematical solution for the location of the stationary point can be obtained by writing
the second-order model in matrix notation:

with:

As apparent, b is a (k × 1) vector including first-order regression coefficients, B is a (k × k)
symmetric matrix, whose main diagonal elements correspond to pure quadratic coefficients,
whereas off-diagonal elements correspond to one-half of the mixed quadratic coefficients.

The stationary point can be found by equating to 0 the derivative of the expected response
with respect to the elements of vector x’:

and x’ being the transpose of x



Response surface approach starting from a central composite design

In the specific example, a central composite design (CCD) was adopted to proceed with
the response surface approach:

The blue, red and green rectangles in the table represent, respectively, the 22 factorial
design, the 5 replicates obtained in the design center and the four-tip star design, with α
= N1/4, where N is the number of experiments in the factorial part, thus α = (4)1/4 = 1.414.



The ANOVA table is the following:

The following table summarizes the model coefficients and related information:



The final equations of the model, in terms of coded and actual factors, respectively, are:

Yield (y) = 79.94 + 0.995 A + 0.515 B -1.376 A2 - 1.001 B2 + 0.250 AB

Yield (y)= -1430.5 + 7.8 time + 13.3 temp - 0.055 time2 - 0.04 temp2 + 0.01 time temp

They correspond to the following response surface and contour plot:

response surface contour plot



Coded co-ordinates corresponding to the maximum response (stationary point) can be
obtained through calculations on matrices, as shown before:

In order to find the actual values of variables corresponding to the maximum response these
coordinates have to be uncoded:

These co-ordinates can be inferred approximately from a visual examination of the contour
plot and, with a slightly greater effort, of the response surface.



Main applications of Design of Experiments

Chemical synthesis

1. Synthetic steps
2. Work up and separation
3. Reagents, solvents, catalysts
4. Structure-related reactivity and properties

Biotechnological industry

1. Pharmaceutics: formulations for drug delivery
2. Media development and optimization
3. Biochemistry
4. Separation (HPLC), assay development and optimization
5. Pharmacology: drug design
6. Process (e.g., fermentation) optimization and control;

Cosmetic industry

1. Processes, production, separation, cleaning
2. Formulations: shampoos, nail polish, creams, perfumes, soaps, powders
3. Molecular structure: high potency, low toxicity, allergenicity



Drug industry

1. Pharmaceutics: formulations for drug release, hardness of pills
2. Organic chemistry: synthesis, drug design
3. Analytical chemistry: separation (HPLC) resolution and speed
4. Pharmacology
5. Process optimization and control: synthesis, fermentation, separations

Process control

1. Process optimization and control (yield, purity, throughput time, pollution, energy
consumption)

2. Product quality and performance (material strength, warp, color, taste, odour)
3. Product stability versus process variation



Software available for Design of Experiments

Adapted from: D.B. Hibbert, J. Chromatogr. B, 910 (2012) 2-13.



Useful bibliographic material on DoE

M. Forina, Fondamenta per la Chimica Analitica e-book ISBN 9788890406461

T. Lundstedt et al., Experimental design and optimization, Chemometrics and Intelligent 
Laboratory Systems, 42 (1998) 3–40

A. Khuri, S. Muchopadhyay,  Response Surface Methodology – advanced review, WIREs
Comp. Stat., 2 (2010) 128–149

J. Goupy, L. Creighton, Introduction to Design of Experiments with JMP® Examples, 3rd  
Edition, 2007, SAS Institute Inc.

R.G. Brereton, Chemometrics: data analysis for the laboratory and chemical plant, 2003, 
John Wiley & Sons Ltd

R. Carlson, Design and Optimization in Organic Synthesis, 1992, Elsevier

D.C. Montgomery, Design and analysis of experiments, 2012, John Wiley & Sons Ltd

D.C. Montgomery, Introduction to Statistical Quality Control, 6th Edition, 2008, John Wiley & 
Sons Ltd
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