
Mixture design

Mixture designs represent a special class of DoE based on response surface, in which the 
response is related to a mixture made up of different ingredients, e.g., an insecticide that 
blends four compounds, a food product including several components, a multi-solvent 
mobile phase for liquid chromatography.

In this case factors represent the proportions of ingredients; thus, they cannot be varied 
independently.

Typical assumptions of mixture designs are:

1) errors are normally (and independently) distributed with mean equal to zero and 
constant variance;

2) the real response surface is continuous over the entire domain of factors;

3) response depends only on the proportions of single ingredients, not on the amount of 
the mixture.



Given q components of a mixture, each with a Xj proportion, the sum of such proportions 
must equate a fixed total T (T = 100 if percentages are adopted):

Each component may eventually be limited by a lower, Lj, and an upper limit, Uj:

Since each component might be expressed with different units, the use of the so-called 
pseudo-components can be convenient.

A pseudo-component, indicated with xj, is defined so that its 
values become 0 and 1 in correspondence of values Lj and Uj for 
the actual component:

Note that the denominator of the xj expression corresponds to the difference existing 
between the maximum and the minimum value of each component.
Indeed, the difference existing between the total T and the lower limits of all the other 
components but the j-th one, corresponds to the upper limit of the j-th component. 
According to the expression in the denominator, this is then subtracted of the Lj value itself. 



As an example, let us consider a mixture of two components, whose total volume is T = 50 
mL.

If L1 = 20 mL, then U2 = 30; if L2 = 0, then U1 = 50.

The table of components and pseudo-components is the following:

Components Pseudo-components

X1 X2 x1 x2

50 0 1.0 0.0

35 15 0.5 0.5

20 30 0.0 1.0

Indeed, for the first experiment:

x1 = (50 – 20) / [50 – (20 + 0)] = 1.0   and   x2 = (0 – 0) / [50 – (20 + 0)] = 0.0 

For the second experiment:

x1 = (35 – 20) / [50 – (20 + 0)] = 15/30 = 0.5   and   x2 = (15 – 0) / [50 – (20 + 0)] = 15/30 = 0.5

For the third experiment:

x1 = (20 – 20) / [50 – (20 + 0)] = 0.0    and   x2 = (30 – 0) / [50 – (20 + 0)] = 30/30 = 1.0



By definition, the sum of pseudo-components is always equal to 1: 

0.1...21
1

=+++=∑
=

q

q

i
i xxxx

From a geometrical point of view this equation represents a simplex with q-1 dimensions.

As a general definition, a k-dimensional simplex is a k-dimensional polytope corresponding 
to the convex envelope of k+1 vertices.

For k = 0 the simplex is a point; for k = 1 it is a segment; for k = 2 it is a triangle; for k = 3 it is 
a tetrahedron:

In a mixture design all experimental points lie on or inside the simplex.



Types of mixture design 

1. Simplex-lattice – a design consisting in a number of experiments uniformly spaced on a 
(q-1) dimensional simplex, where q represents the number of components in the 
mixture. It can be not available if some constraints are present.

2. Simplex-centroid – a design consisting in (2q - 1) experiments, performed with all 
components taken alone, all binary, tertiary, etc., mixtures up to the design centroid. It 
can be not available in the presence of some constraints.

3. Extreme vertices – a design consisting in an experiment for each vertex (always 
available).

Mathematical models for mixture designs 

Mathematical models for mixture designs take into account the fundamental mixture 
constraint. They are usually of three types:

1. First-degree

2. Second-degree or quadratic models

3. Third-degree or cubic models



First-degree models

In this case the basic assumption is that changes in the response depend only on the 
proportions of single components in the mixture.

For a three-component mixture the model can be thus written, in terms of pseudo-
components, as:

However, the constraint between pseudo-components has to be considered:

This equation can be integrated in the model:



If the following new parameters are introduced:

The model can be written as follows:

The consequence of the constraint existing between factors is the absence of a constant 
term in the model.



Second-degree models

The second-degree (or quadratic) mathematical model contains first degree terms, crossed 
terms and squared terms.
Considering that there is no constant, due to the constraint between factors, the model can 
be written as follows, in the case of two components:

Since: which can be written in terms of x1: 

the following equations can be easily obtained:

A similar equation can be written for x2
2, thus square terms are, in fact, equal to a first-

degree term and a crossed term.

The model can then be written as:

with:

By analogy, for three components the quadratic model becomes:



Third-degree models

The complete third-degree model, also named complete cubic model, in the case of three 
components can be obtained starting from the following polynomial equation:

However, due to constraints existing between mixture components (e.g., x1 = 1 – x2 – x3), the 
equation can be simplified as follows:

Actually, a simplified cubic mathematical model, also named special or restricted cubic 
model, containing first-degree terms, crossed terms and a supplementary term 
corresponding to the product of the three components is commonly adopted:



Simplex-Lattice Designs

Based on the general requirement (experiments spaced uniformly on a (q-1)-dimensional 
simplex), the number of experiments for a simplex-lattice design depends on the model 
order, since for a model of order m the proportions assumed by each component are:

For m = 1 (linear model) and q = 3 each component can only assume values 0 and 1, thus 3 
experiments are required:
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For m = 2 (quadratic model) and q = 3, each component can assume values 0, 0.5 and 1, thus 
6 experiments are required:
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For m = 3 (cubic model) and q = 3, each component can assume values 0, 1/3, 2/3 and 1, 
thus 10 experiments are required:
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Simplex-Centroid Designs

Simplex-Centroid Designs include all possible combinations of components:

q permutations of (1, 0, 0, …,0)

q permutations of (1/2, 1/2, 0, …., 0)

…………………………………………………………

centroid (1/q, 1/q,….,1/q)

As an example, for q = 3, the combinations are:

(1, 0, 0); (0, 1, 0); (0, 0, 1)

(1/2, 1/2, 0); (1/2, 0, 1/2); (0, 1/2, 1/2)

(1/3, 1/3, 1/3)

The total number of experiments is (2q – 1) = 7

x3

x1 x2



Additional experiments

Further experiments (augmented points) can be performed in a mixture design to increase 
the degrees of freedom for the evaluation of lack of fit and for model significance analysis.

Typical augmented points are related to combinations placed at the centre of segments 
having the simplex centre and one of its vertices as extremities:

x1

(1/6,1/6,2/3)

x3x2

(1/6, 2/3,1/6)

(2/3,1/6,1/6)



Steps to complete an optimization based on mixture design

1. Definition of problem and objectives

2. Selection of the mixture components and relative proportions

3. Identification of the response

4. Choice of the most appropriate model to fit data and of the most appropriate design to 
achieve a good fit and, at the same time, to evaluate the eventual lack of fit

5. Execution of experiments

6. Data analysis (e.g., by ANOVA)

7. Formulation of conclusions and recommendations.



Example of Mixture Design: formulation of a rocket propellant

The formulation of a rocket propellant, i.e., a mixture of three components: fuel, oxidizer 
and binder, with the aim of achieving the most satisfactory burn rate, can be considered a 
typical example of mixture design.

Considering that 10% of the propellant consists in an inert component, the main constraint 
for the three components is:

fuel + oxidizer + binder = 90%

In addition, each of the three components has a lower limit:

30% ≤ fuel
20% ≤ oxidizer
20% ≤ binder

Consequently, the remaining 20% of the mixture can be any combination of the three 
components.

The elaboration of a Simplex-Centroid design based on the Statgraphics software is 
described in the next slides.



Experiments typical of the Simplex-Centroid design for three component were integrated by 
3 points (augmented design); 10 runs were thus performed.

In the figure letter P indicates primary blends, i.e., mixtures in which a specific component 
is at its maximum value and the other at their minimum; B indicates binary blends and C 
the centroid. Additional experiments are indicated by red points.

5 further experiments, one at each vertex and 2 in the centroid, were performed for the 
evaluation of pure error and for the lack of fit test.



x1 x2 x3 response

A summary of experimental conditions and responses is reported in the following table, 
whereby different types of experiments are emphasised by different colors:

Vertices (P)

Binary blends (B)

Replicates

Additional runs

Centroid



Notably, the mixture composition at the centroid 
depends on the compositions at the vertices and at 
the half points of opposite sides (i.e., at the ends of 
triangle medians)

As an example, the percentages at these points for 
fuel are 50 and 30%. Since the centroid is located at 
2/3 of the median length, the fuel percentage at the 
centroid is 50 - 2/3 × (50 -30) = 36.6667.

By analogy, the percentages of oxidizer and binder at 
the centroid are:
40 - 2/3 × (40 -20) = 26.6667

Additional points are located at 1/3 of each median 
length, starting from the corresponding vertex, thus 
at the additional point close to the fuel vertex, 
shown in the figure, fuel percentage is:

50 - 1/3 × (50 -30) = 43.3333

Oxidizer and binder have the same percentages at 
that point, i.e., (90 – 43.3333) / 2 = 23.3333.

2/3

1/3

2/3

1/3



The coefficients for the special cubic model are summarized in the following table:

The model equation is:

A special cubic model was adopted in this case:



The estimated response surface, represented as a 3D-plot together with a 2D color plot, is 
reported in the following figure:



A detailed view of the 2D color plot is:

In the table on the right the propellant 
composition leading to the optimal burn rate, 
as assessed from the model, is reported:



In the following table observed and fitted values, the corresponding residuals and the 
studentized residuals are reported:

Note that studentized residuals correspond to residuals divided by an estimate of the 
standard deviation.



A further Example of Mixture Design: modulating the elongation of a thread 
through optimization of a mixture of three polymers

A mixture of polymers (polyethylene, polystyrene and polypropylene), used to fabricate a 
synthetic fibre, was optimized to obtain the optimal elongation of the thread.

In this case the proportions of each polymer could vary from 0 to 100%, thus the study 
domain was the complete equilateral triangle.

An augmented simplex-centroid design was adopted by the experimenter, with additional 
points, reported in grey in the figure (points 8, 9 and 10), used as control points, i.e., to 
verify the predictive power of the model:



The obtained results were:

The coefficients obtained for the special cubic 
model were: 

The model equation was, then:



The comparison between observed and 
predicted responses at control points is 
described by the table on the right:

The contour plot resulting from the model 
provided useful indications on the process:

high polypropylene %

High value of thread
elongation

Low value of thread
elongation

high polystyrene %

Thread elongation independent
of composition

20% polypropylene, 30 % polystyrene
50% polyethylene



Application of Minitab 18 to Mixture Design

The same dataset considered for the optimization of the polymer mixture has been applied 
to show the application of Minitab 18 to Mixture Design.

The main menu for the setting of Mixture Designs in Minitab 18 can be accessed using the 
Stat > DOE > Mixture > Create Mixture Design… pathway.

In this case the Simplex centroid design for 3 components is selected and the presence of 
augmented data (axial points) and the absence of replicates is specified in the Designs… 
window. 



In the Components window the total mixture 
amount (1, i.e., 100%,, in the present case) is 
specified, along with lower and upper values of 
components (0 and 1, respectively, in the present 
case). 

In the Options window the analyst can specify if 
randomization of runs is required and if the design 
and its parameters have to be stored in the 
worksheet.



As a consequence, all settings for runs to be performed (10 runs in this case) are 
automatically reported in the Worksheet:

Once experiments have been made, responses can be entered in the appropriate column of 
the worksheet and then model calculations can be started by accessing the
Stat > DOE > Mixture > Analyze Mixture Design… pathway.

Note that numbers reported in the PtType (Point Type) 
column correspond to those shown in the table reported 
inside the Create Mixture Design: Simplex Centroid Design 
window shown before.



In the specific case, components are analysed in proportions (their percentages), not as 
pseudocomponents. 
The type of model, a special cubic one, in the present case, can be specified in the Terms… 
window:

Different types of Graphs and Results to be shown at the end of calculations can be selected 
in the corresponding windows.



A table including all regression 
coefficients and the ANOVA table 
can be included among the 
Results and are shown in the 
Session window at the end of 
calculations.

Notably, a slight discrepancy with 
results shown before can be 
observed for the coefficient 
related to the A*B*C product in 
the regression model.

Actually, as shown by SE 
coefficient and by the P-Value, 
much higher than 0.05, the 
contribution of that term to the 
model is not statistically 
significant.

Not surprisingly, the same outcome can be inferred from the ANOVA table.

Note also that Variance Inflation Factors (VIF) were all higher than 1. This is reasonable, in a 
model based on mixture design, since a correlation is expected between variables in this 
case.



As a last step, contour and/or surface plots resulting from the calculations can be displayed 
by accessing the Stat > DOE > Mixture > Contour/Surface Plots… pathway. 
Different graphical settings can be selected from the Setup… windows referred to the two 
types of plots. The one referred to the ContourPlot is reported as an example:



As apparent, the resulting contour plot is virtually identical to the one reported before:

The surface plot (that can be rotated in any 
direction) provides a more direct 
representation of the variation of response with 
the polymer mixture composition, emphasizing 
the increase in response related to the increase 
in the percentage of polypropylene (component 
C).
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