
Discrete and continuous random variables

A random variable (also called aleatory or stochastic) is a variable that can assume
different values, according to an aleatory phenomenon.

A typical example is the result of dice casting, which can assume only one of the
possibile integer numbers comprised between 1 and 6, each with the same probability
(1/6). The score of dice casting is an example of discrete random variable, i.e., a variable
that can assume only values included in a subset of the set of real numbers.
Interestingly, in the case of a discrete variable no value can have a zero probability (after
each dice casting a value among possible ones is certainly obtained).

A continuous random variable can assume, at least potentially, all values included in the
set of real numbers.
As an example, the length of a leaf could correspond to one of the infinite values
comprised between 3 and 4 cm. Speaking strictly in mathematical terms, each of the
possible values obtained after measuring the leaf length has a zero probability, since its
occurrence has to be divided by infinity. This is a paradox typical of continuous variables.
Only the probability for such a variable to assume a value included in an interval can be
calculated.



Probability density function

In probability theory, a Probability 
Density Function (PDF), or density of 
a continuous random variable z, 
indicated as f(z), is a function that 
describes the relative likelihood for 
this random variable to assume a 
given value. 

The probability of the random variable falling within a particular range of values is given by 
the integral of this variable’s density over that range, that is, the area underlying the 
density function between the lowest and the greatest values of the range. 
This definition clarifies that the probability referred to a single value of the variable is zero, 
since it would correspond to the integral calculated from z1 to z1.

In the picture, the probability of the random variable falling between – ∞ and a specific 
value zQ, that is called quantile, is also shown.



Cumulative distribution function

In probability theory, the cumulative 
distribution function (CDF) of a 
random variable z, F(z) is a function 
describing the probability that the 
variable will assume a value less than 
or equal to a specific number zQ.

Functions f(z) and F(z) are related by 
the following equations:

f(z) = dF(z)/dz
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f(z)dz



Expectation (expected value) and variance of a continuous random variable

The expectation of a continuous random variable x whose probability density function is f(x) 
can be calculated as:

E(X) = 

This is a special case of the general equation:

expressing the expected value for a function g of the continuous random variable x.

Note that the expectation for a constant a (i.e., when g(X) = a) is, obviously, a itself.

When g(X) = Xn the resulting expectation is defined as non-central (or simple) moment of 
order n (also called the nth non-central moment) for the probability distribution of the 
random variable X. It is indicated as µn or mn.
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g(x)f(x)dx



Variance of a continuous random variable X, representing a special case of central moment 
for a random variable (it corresponds to the central moment of order 2) can be calculated as:

V(X) = E[(X-E(X))2] = 

The following equations can be easily inferred:

thus:

V(X) = E(X2)-[E(X)]2 = E(X2)-µ2

A consequence of this relation is that the variance of a constant a is 0:

V(a) = E(a2)-[E(a)]2  = a2 – [a]2 = 0 
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If the variable ax + b is considered, with a and b corresponding to constants, its 
variance can be calculated by applying previous relations:

V(ax + b) = V(ax) + V(b) = V(ax) = E{(ax – aµ)2} =

  = E(ax)2 + E(aµ)2 – 2a2 µ E(x) =

  = a2 E(x2) + a2 E(µ2) – 2a2µ2  =

  = a2 E(x2)  + a2µ2 – 2a2µ2  =

  = a2 E(x2) –  a2µ2  = a2 [E(x2) - µ2] = a2 V(x) 



Central moments of a continuous random variable

Variance is just one of the possible central moments of the probability distribution of a 
random variable.

Indeed, as a general definition, a central moment is the expected value of a specified 
integer power of the deviation of the random variable from the mean:

Note that an apex is often added to the µn symbol to distinguish central from non-central 
moments.

Other interesting central moments, with n > 2, can be calculated for the probability 
distribution of a random variable.
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Skewness of a distribution

In probability theory and statistics, skewness is a measure of the asymmetry of the 
probability distribution of a real-valued random variable about its mean. The skewness 
value can be positive or negative, or undefined.

For a unimodal distribution, negative skew commonly indicates that the tail is on the left 
side of the distribution, and positive skew indicates that the tail is on the right:



A further mathematical definition of skewness, indicated by γ1, also called asymmetry 
coefficient, was given by Karl Pearson as the standardized third central moment, i.e., the 
third central moment ratioed to the cubic power of standard deviation:

From a mathematical point of view skewness can be calculated using the third central 
moment:

µ3’ = E[(X-µ)3]

Negative or positive skewness correspond to the sign of this moment:

µ3’ < 0 µ3’ > 0 Note that µ3’ = 0 in the case of a 
symmetric probability density 
function.
The same occurs for all µn’ values 
with n being an odd number.



Kurtosis of a distribution

Kurtosis (from Greek: κυρτός, kyrtos or kurtos, meaning "curved, arching") is a measure of 
the "tailedness" of the probability distribution of a real-valued random variable. 
In a similar way to the concept of skewness, kurtosis is a descriptor of the shape of a 
probability distribution and there are different ways of quantifying it for a theoretical 
distribution.

The standard measure of kurtosis, also proposed by Karl Pearson, correspond to the 
standardized fourth central moment of the population, i.e., the fourth central moment 
ratioed to the fourth power of standard deviation:

The kurtosis of any Gaussian distribution is 3 and it is common to compare the kurtosis of a 
distribution to this value. By general definition, distributions that have a kurtosis equal to 3 
are defined “mesokurtic”.

Sometimes the difference between kurtosis and 3, called excess kurtosis, is defined.



Distributions with kurtosis less than 3 are 
defined platykurtic; an extreme example is 
represented by the uniform distribution.

Distributions with kurtosis higher than 3 are defined 
leptokurtic; an example is represented by the Laplace 
distribution.

Laplace distribution PDF
Uniform distribution PDF



Entropy of a distribution

In statistics, the entropy of a continuous random variable having a PDF given by f(x) 
correspond to the expectation of the negative natural logarithm of the PDF:

This mathematical equation is the extension to a continuous random variable of the 
information entropy introduced in 1948 by Claude Shannon for a discrete random variable: 

where Pi represents the probability associated to the ith value of the discrete variable. 

The comparison between coin toss and die casting clarifies the practical significance of 
information entropy. 
For a fair coin toss Pi = 1/2 both for “heads” and for “tails”, thus S = log 2. For a fair die 
casting Pi = 1/6 for each of the six possible scores (1,2,…, 6) and S = log 6. 
Information entropy is clearly higher in the case of die casting, since it is more difficult to 
predict which event (which score, for a die) will occur, compared to coin toss.



Moment-generating function (MGF)

In probability theory and statistics, the moment-generating function of a real-valued random 
variable is an alternative specification of its probability distribution. It enables an easy 
calculation of non-central (simple) moments related to a distribution.

By definition, the MGF of a random variable X is given by:

Since the series expansion of etX  is:

MX(t) can be also expressed as:

where mn are different non-central (simple) moments of the distribution. 



By definition, the nth moment of a probability density function, indicated by mn, is the 
expectation of the nth power of the corresponding random variable:

The most used moment of a PDF is the first (n = 1), corresponding to the population mean.

If MX(t) is differentiated k times with respect to t and t is set equal to 0 the kth non-central 
moment of the distribution is obtained.

In fact:

thus:

[dMX(t)/dt]t=0 = E(X) = m1                      [d2MX(t)/dt2]t=0 = E(X2) = m2

and so on.



Median and mode of a distribution

Median and mode can be used as alternatives to the
mean for the description of location (central tendency)
of a distribution on the axis reporting the variable
values.

From a mathematical point of view, the median,
indicated as m, can be inferred from the equations:

Mode is the value corresponding to the maximum of
the f(x) function (note that more than one maximum
can be present in a multimodal distribution).

Mean, mode and median do not coincide in the case of
unimodal, asymmetric distributions (median is located
between mode and mean).



Covariance

Given two random variables X and Y, with mean µX and µy, respectively, their covariance,
indicated as cov[X,Y] or as σX,Y, is given by the equation:

cov[X,Y] = E[(X- µX)(Y- µy)]

Some relevant properties of covariance are:



The first property can be demonstrated by considering some properties of Expectation:

cov[X,Y] = E[(X- µX)(Y- µy)] = E[XY – µyX – µxY + µxµy] =

= E(XY) – µyE(X) – µxE(Y) + µxµy =

= E(XY) – µyµx – µxµy + µxµy =

= E(XY) – µxµy = E(XY) – E(X)E(Y)

Note that, if Y = X, the final equation becomes:

V(X) = E(X2)-[E(X)]2 = E(X2)-µ2

thus:

cov[X,X] = V(X)



If random variables X and Y are independent, i.e., if their probabilities do not influence each
other, for any couple of set of values (A,B) the following equation is true:

P(X ∈A, Y ∈ B) = P(X ∈A) * P(Y ∈ B)

In this case:

E(XY) = E(X) × E(Y), thus:

cov(X,Y) = E(XY) – µxµy = E(X) × E(Y) – µxµy = µxµy – µxµy = 0

The two variables are thus also not correlated, which is reasonable.



Interestingly, while two independent variables are certainly not correlated, two non
correlated variables are not necessarily independent.

For example, given variables X, uniformly distributed on values {-1, 0, 1}, and Y =|X|, their
product is:

XY = X|X| = X, thus E(XY) = E(X) = 0,

whereas E(Y)= (1/3) * |-1| + (1/3) * 0 + (1/3) * |1| = 2/3.

In this case, cov (X,Y) = E(XY) – E(X) × E(Y) = 0, thus X and Y are not correlated.

However, X and Y are not independent.

Indeed:

P(X=1, Y = 0) = 0, by definition of Y

P(X=1) × P(Y =0) = 1/3 × 1/3 = 1/9

Consequently:

P(X=1, Y = 0) ≠ P(X=1) × P(Y =0)



These relations can be extended easily to the case of variance related to the sum of n
random variables:

V ∑i=1n Xi = ∑i=1n V(Xi) + 2 ∑i=1n ∑j=i+1n Cov[Xi, Yi]

Covariance has to be considered in the general calculation of the variance related to the sum
of two random variables:

V[X+Y] = E [ x + y) − (µx + µy ]2 = E [ x − µx) + (y − µy ]2 =

= E (x − µx)2 + 𝐸𝐸 (y − µy)2 +2𝐸𝐸 (x − µx)(y − µy) =

= V(X) + V(Y) + 2 Cov (X,Y)

By analogy:

V[X-Y] = V(X) + V(Y) - 2 Cov (X,Y)

If all random variables are independent (and, then, also not correlated) the variance of their
sum simply corresponds to the sum of their variances.



Examples of distributions

Uniform distribution (continuous)



It can be easily demonstrated that the value 
assumed by f(x) for x comprised between a and b is 
1/(b-a).

Indeed, if k corresponds to that value, the following 
equations can be written:
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dx = k (b−a) = 1

Hence:  k = 1/(b-a).

The population mean can be calculated as follows:
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The population variance can be calculated as follows:

V x = E x − μ 2 = E x2 − E x 2

E x2 = �
0

+∞

x2f(x)dx =�
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and:

V x = (b2+ a2+ab)
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Normal (Gaussian) distribution



Relationship between Normal Cumulative Distribution Function (CDF) and Error
function (erf)

By definition, the error function of x is:

which corresponds to a sigmoidal function:

In order to find the relationship between
Normal CDF and erf a variable replacement
has to be made:

Consequently:

and

The following equations can thus be written:



The two integrals reported in the right side of the equation correspond to specific values of
the CDF for the standard normal distribution (i.e., of the function e-z2/2):

Consequently:

then:

If the CDF of a general (not of the standard) normal
distribution is considered, variable x in the above
equation (equivalent to z) needs to be replaced by (x-
µ)/σ, thus the following general equation is obtained:

Since an erf is a sigmoidal function and Φ(x) is expressed as the sum between an erf and a
constant, it is not surprising that also Φ(x) has a sigmoidal shape.



Student’s t distribution



χ2 (chi-squared) distribution



Fisher-Snedecor (F) distribution
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