informazioni sull'insegnamento	
denominazione insegnamento	chimica computazionale
corso di studi	scienze chimiche
classe di laurea	LM-54

docente responsabile	
nome e cognome	fulvio ciriaco
indirizzo email	fulvio.ciriaco@uniba.it
telefono	0805442041

dettaglio insegnamento	
anno di corso	2
semestre	3

modalità erogazione	
lezione	CFU 3
esercitazioni	CFU 2

organizzazione della didattica	
ore totali	125
ore insegnamento	60
ore studio individuale	65

calendario		
inizio	ottobre	
fine	gennaio	

syllabus	
prerequisiti	elettrostatica, analisi, geometria

	risultati di apprendimento attesi
conoscenza e capacità	estese conoscenze della trattazione del moto elettronico e
di comprensione	nucleare, del calcolo delle proprietà molecolari e della reattività
capacità di applicare	estensione di input per il calcolo quantomeccanico, uso di pro-
conoscenza e compren-	grammi per la visualizzazione di struttura e proprietà delle
sione	molecole ed automatizzazione dei processi
autonomia di giudizio	capacità di lettura critica dell'output di programmi di quan-
	tomeccanica e comprensione dei limiti delle varie tecniche di
	calcolo
abilità comunicative	
capacità di apprendi-	conoscenza delle modalità di accesso alla documentazione del
mento	software usato
metodi didattici	lezioni frontali alla lavagna, esercizi alla lavagna, esercitazioni
	su pc
metodi di valutazione	elaborazione di un esercizio personalizzato ed esposizione orale
criteri di valutazione	lo studente deve essere in grado di procedere alla progettazio-
	ne ed esecuzione di un calcolo di proprietà chimicofisiche della
	materia in autonomia, deve inoltre essere in grado di esporre e
	giustificare il procedimento e le scelte effettuati
riferimenti	F. Ciriaco: Dispense:
	http://puccini.chimica.uniba.it/didattica/corsi/chim-comp/
	A.S. Davidov: Meccanica Quantistica
	R. McWeeney: Molecular Quantum Mechanics
	GAMESS-US: http://www.msg.chem.iastate.edu/gamess/
	NWChem: https://github.com/nwchemgit/nwchem/wiki
	Psi4: http://www.psicode.org/
	GPaw: https://wiki.fysik.dtu.dk/gpaw/documentation/manual.html
	Gabedit: http://gabedit.sourceforge.net/
	avogadro: http://avogadro.openmolecules.net/wiki/Main_Page
	Jmol: http://jmol.sourceforge.net/
	molden: http://www.cmbi.ru.nl/molden/

Programma

Fattorizzazione del moto nucleare nell'approssimazione Born-Oppenheimer

Requisiti di simmetria delle funzioni d'onda fermioniche. Approcci alla antisimmetrizzazione della funzione d'onda

Densità elettronica e matrici densità

Osservazioni sulla natura degli operatori energia cinetica ed interazione elettrostatica

Soluzioni del problema: principali implementazioni

Soluzione delle equazioni Hartree-Fock nelle molecole. Vincoli di simmetria.

Correlazione.

Interazione di configurazione.

Tecniche coupled-cluster: accenni

Introduzione al funzionale densità

Basi nucleo-centriche: GTO e STO. Potenziali di core.

Metodi semiempirici

Modelli per l'interazione della molecola con il solvente

Metodi per il calcolo in fase solida

Configurazione nucleare

Concetto di superficie di energia potenziale nell'approssimazione Born-Oppenheimer

Gradi di libertà, coordinate interne, matrice z ed altre descrizioni della configurazione nucleare.

Determinazione della struttura di minima energia e dello stato di transizione.

Sperimentazione

Introduzione al software di calcolo opensource: GAMESS-US, NWChem, Psi4, GPaw

Descrizione generale del formato di input.

Programmi di visualizzazione ed editing molecolare

Esempi di calcolo HF, DFT e CI di energie di formazione/dissociazione, curve di dissociazione, spettro vibrazionale con correzioni anarmoniche, stati di transizione