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Preface

This book, together with the code, answers to questions, and other material at

www.bayesmodels.com, teaches you how to do Bayesian modeling. Using modern

computer software—and, in particular, the WinBUGS program—this turns out to

be surprisingly straightforward. After working through the examples provided in

this book, you should be able to build your own models, apply them to your own

data, and draw your own conclusions.

This book is based on three principles. The first is that of accessibility : the

book’s only prerequisite is that you know how to operate a computer; you do not

need any advanced knowledge of statistics or mathematics. The second principle is

that of applicability : the examples in this book are meant to illustrate how Bayesian

modeling can be useful for problems that people in cognitive science care about.

The third principle is that of practicality : this book offers a hands-on, “just do it”

approach that we feel keeps students interested and motivated.

In line with these three principles, this book has little content that is purely

theoretical. Hence, you will not learn from this book why the Bayesian philosophy

to inference is as compelling as it is; neither will you learn much about the intricate

details of modern sampling algorithms such as Markov chain Monte Carlo, even

though this book could not exist without them.

The goal of this book is to facilitate and promote the use of Bayesian model-

ing in cognitive science. As shown by means of examples throughout this book,

Bayesian modeling is ideally suited for applications in cognitive science. It is easy

to construct a basic model, and then add individual differences, add substantive

prior information, add covariates, add a contaminant process, and so on. Bayesian

modeling is flexible and respects the complexities that are inherent in the modeling

of cognitive phenomena.

We hope that after completing this book, you will have gained not only a new

understanding of statistics (yes, it can make sense), but also the technical skills to

implement statistical models that professional but non-Bayesian cognitive scientists

dare only dream about.

Michael D. Lee

Irvine, USA

Eric-Jan Wagenmakers

Amsterdam, The Netherlands
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PART I

GETTING STARTED

[T]he theory of probabilities is basically just common sense reduced to

calculus; it makes one appreciate with exactness that which accurate

minds feel with a sort of instinct, often without being able to account

for it.

Laplace, 1829





1 The basics of Bayesian analysis

1.1 General principles

The general principles of Bayesian analysis are easy to understand. First, uncer-

tainty or “degree of belief” is quantified by probability. Second, the observed data

are used to update the prior information or beliefs to become posterior information

or beliefs. That’s it!

To see how this works in practice, consider the following example. Assume you

are given a test that consists of 10 factual questions of equal difficulty. What we

want to estimate is your ability, which we define as the rate θ with which you

answer questions correctly. We cannot directly observe your ability θ. All that we

can observe is your score on the test.

Before we do anything else (for example, before we start to look at your data) we

need to specify our prior uncertainty with respect to your ability θ. This uncertainty

needs to be expressed as a probability distribution, called the prior distribution.

In this case, keep in mind that θ can range from 0 to 1, and that we do not know

anything about your familiarity with the topic or about the difficulty level of the

questions. Then, a reasonable “prior distribution,” denoted by p (θ), is one that

assigns equal probability to every value of θ. This uniform distribution is shown by

the dotted horizontal line in Figure 1.1.

Now we consider your performance, and find that you answered 9 out of 10

questions correctly. After having seen these data, the updated knowledge about

θ is described by the posterior distribution, denoted p (θ | D), where D indicates

the observed data. This distribution expresses the uncertainty about the value of

θ, quantifying the relative probability that each possible value is the true value.

Bayes’ rule specifies how we can combine the information from the data—that is,

the likelihood p (D | θ)—with the information from the prior distribution p (θ), to

arrive at the posterior distribution p (θ | D):

p (θ | D) =
p (D | θ) p (θ)

p(D)
. (1.1)

This equation is often verbalized as

posterior =
likelihood× prior

marginal likelihood
. (1.2)

Note that the marginal likelihood (i.e., the probability of the observed data) does

not involve the parameter θ, and is given by a single number that ensures that

3
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tFig. 1.1 Bayesian parameter estimation for rate parameter θ, after observing 9 correct

responses and 1 incorrect response. The mode of the posterior distribution for θ is

0.9, equal to the maximum likelihood estimate (MLE), and the 95% credible interval

extends from 0.59 to 0.98.

the area under the posterior distribution equals 1. Therefore, Equation 1.1 is often

written as

p (θ | D) ∝ p (D | θ) p (θ) , (1.3)

which says that the posterior is proportional to the likelihood times the prior. Note

that the posterior distribution is a combination of what we knew before we saw the

data (i.e., the information in the prior distribution), and what we have learned from

the data. In particular, note that the new information provided by the data has

reduced our uncertainty about the value of θ, as shown by the posterior distribution

being narrower than the prior distribution.

The solid line in Figure 1.1 shows the posterior distribution for θ, obtained when

the uniform prior is updated with the data. The central tendency of a posterior

distribution is often summarized by its mean, median, or mode. Note that with

a uniform prior, the mode of a posterior distribution coincides with the classical

maximum likelihood estimate or MLE , θ̂ = k/n = 0.9 (Myung, 2003). The spread

of a posterior distribution is most easily captured by a Bayesian x% credible interval

that extends from the (100−x)/2th to the (100 +x)/2th percentile of the posterior

distribution. For the posterior distribution in Figure 1.1, a 95% Bayesian credible

interval for θ extends from 0.59 to 0.98. In contrast to the orthodox confidence

interval, this means that one can be 95% confident that the true value of θ lies in

between 0.59 and 0.98.



5 Prediction

Exercises

Exercise 1.1.1 The famous Bayesian statistician Bruno de Finetti published two

big volumes entitled Theory of Probability (de Finetti, 1974). Perhaps surpris-

ingly, the first volume starts with the words “probability does not exist.” To

understand why de Finetti wrote this, consider the following situation: some-

one tosses a fair coin, and the outcome will be either heads or tails. What

do you think the probability is that the coin lands heads up? Now suppose

you are a physicist with advanced measurement tools, and you can establish

relatively precisely both the position of the coin and the tension in the mus-

cles immediately before the coin is tossed in the air—does this change your

probability? Now suppose you can briefly look into the future (Bem, 2011),

albeit hazily. Is your probability still the same?

Exercise 1.1.2 On his blog, prominent Bayesian Andrew Gelman wrote (March

18, 2010): “Some probabilities are more objective than others. The probability

that the die sitting in front of me now will come up ‘6’ if I roll it . . . that’s

about 1/6. But not exactly, because it’s not a perfectly symmetric die. The

probability that I’ll be stopped by exactly three traffic lights on the way to

school tomorrow morning: that’s well, I don’t know exactly, but it is what

it is.” Was de Finetti wrong, and is there only one clearly defined probabil-

ity of Andrew Gelman encountering three traffic lights on the way to school

tomorrow morning?

Exercise 1.1.3 Figure 1.1 shows that the 95% Bayesian credible interval for θ

extends from 0.59 to 0.98. This means that one can be 95% confident that

the true value of θ lies between 0.59 and 0.98. Suppose you did an ortho-

dox analysis and found the same confidence interval. What is the orthodox

interpretation of this interval?

Exercise 1.1.4 Suppose you learn that the questions are all true or false questions.

Does this knowledge affect your prior distribution? And, if so, how would this

prior in turn affect your posterior distribution?

1.2 Prediction

The posterior distribution θ contains all that we know about the rate with which

you answer questions correctly. One way to use the knowledge is prediction.

For example, suppose you are confronted with a new set of 5 questions, all of the

same difficulty as before. How can we formalize our expectations about your perfor-

mance on this new set? In other words, how can we use the posterior distribution

p (θ | n = 10, k = 9)—which, after all, represents everything that we know about θ

from the old set—to predict the number of correct responses out of the new set of

nrep = 5 questions? The mathematical solution is to integrate over the posterior,
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∫
p (krep | θ, nrep = 5) p (θ | n = 10, k = 9) dθ, where krep is the predicted number

of correct responses out of the additional set of 5 questions.

Computationally, you can think of this procedure as repeatedly drawing a random

value θi from the posterior, and using that value to every time determine a single

krep. The end result is p (krep), the posterior predictive distribution of the possible

number of correct responses in the additional set of 5 questions. The important

point is that by integrating over the posterior, all predictive uncertainty is taken

into account.

Exercise

Exercise 1.2.1 Instead of “integrating over the posterior,” orthodox methods of-

ten use the “plug-in principle.” In this case, the plug-in principle suggests that

we predict p(krep) solely based on θ̂, the maximum likelihood estimate. Why

is this generally a bad idea? Can you think of a specific situation in which

this may not be so much of a problem?

1.3 Sequential updating

Bayesian analysis is particularly appropriate when you want to combine different

sources of information. For example, assume that you are presented with a new

set of 5 questions of equal difficulty. You answer 3 out of 5 correctly. How can we

combine this new information with the old? Or, in other words, how do we update

our knowledge of θ? Consistent with intuition, Bayes’ rule entails that the prior

that should be updated based on your performance for the new set is the posterior

that was obtained based on your performance for the old set. Or, as Lindley put it,

“today’s posterior is tomorrow’s prior” (Lindley, 1972, p. 2).

When all the data have been collected, however, the order in which this was done

is irrelevant. The results from the 15 questions could have been analyzed as a single

batch; they could have been analyzed sequentially, one-by-one; they could have been

analyzed by first considering the set of 10 questions and next the set of 5, or vice

versa. For all these cases, the end result, the final posterior distribution for θ, is

identical. Given the same available information, Bayesian inference reaches the same

conclusion, independent of the order in which the information was obtained. This

again contrasts with orthodox inference, in which inference for sequential designs

is radically different from that for non-sequential designs (for a discussion, see, for

example, Anscombe, 1963).

Thus, a posterior distribution describes our uncertainty with respect to a pa-

rameter of interest, and the posterior is useful—or, as a Bayesian would have it,

necessary—for probabilistic prediction and for sequential updating. To illustrate,

in the case of our binomial example the uniform prior is a beta distribution with

parameters α = 1 and β = 1, and when combined with the binomial likelihood
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this yields a posterior that is also a beta distribution, with parameters α + k and

β+n−k. In simple conjugate cases such as these, where the prior and the posterior

belong to the same distributional family, it is possible to obtain analytical solutions

for the posterior distribution, but in many interesting cases it is not.

1.4 Markov chain Monte Carlo

In general, the posterior distribution, or any of its summary measures, can only

be obtained analytically for a restricted set of relatively simple models. Thus, for

a long time, researchers could only proceed easily with Bayesian inference when

the posterior was available in closed-form or as a (possibly approximate) analytic

expression. As a result, practitioners interested in models of realistic complexity

did not much use Bayesian inference. This situation changed dramatically with

the advent of computer-driven sampling methodology, generally known as Markov

chain Monte Carlo (MCMC: e.g., Gamerman & Lopes, 2006; Gilks, Richardson,

& Spiegelhalter, 1996). Using MCMC techniques such as Gibbs sampling or the

Metropolis–Hastings algorithm, researchers can directly sample sequences of values

from the posterior distribution of interest, forgoing the need for closed-form analytic

solutions. The current adage is that Bayesian models are limited only by the user’s

imagination.

In order to visualize the increased popularity of Bayesian inference, Figure 1.2

plots the proportion of articles that feature the words “Bayes” or “Bayesian,” ac-

cording to Google Scholar (for a similar analysis for specific journals in statistics

and economics see Poirier, 2006). The time line in Figure 1.2 also indicates the intro-

duction of WinBUGS, a general-purpose program that greatly facilitates Bayesian

analysis for a wide range of statistical models (Lunn, Thomas, Best, & Spiegel-

halter, 2000; Lunn, Spiegelhalter, Thomas, & Best, 2009; Sheu & O’Curry, 1998).

MCMC methods have transformed Bayesian inference to a vibrant and practical

area of modern statistics.

For a concrete and simple illustration of Bayesian inference using MCMC, con-

sider again the binomial example of 9 correct responses out of 10 questions, and

the associated inference problem for θ, the rate of answering questions correctly.

Throughout this book, we use WinBUGS to do Bayesian inference, saving us the

effort of coding the MCMC algorithms ourselves.1 Although WinBUGS does not

work for every research problem application, it will work for many in cognitive sci-

1 At this point, some readers want to know how exactly MCMC algorithms work. Other readers
feel the urge to implement MCMC algorithms themselves. The details of MCMC sampling are

covered in many other sources and we do not repeat that material here. We recommend the
relevant chapters from the following books, listed in order of increasing complexity: Kruschke

(2010a), MacKay (2003), Gilks et al. (1996), Ntzoufras (2009), and Gamerman and Lopes
(2006). An introductory overview is given in Andrieu, De Freitas, Doucet, and Jordan (2003).

You can also browse the internet, and find resources such as http://www.youtube.com/watch?

v=4gNpgSPal_8 and http://www.learnbayes.org/.



8 The basics of Bayesian analysis

1980 1985 1990 1995 2000 2005 2010
0

5

10

15

20

25

Year

P
ro

p
o

rt
io

n
 o

f 
a

rt
ic

le
s

WinBUGS

tFig. 1.2 A Google Scholar perspective on the increasing popularity of Bayesian inference,

showing the proportion of articles matching the search “bayes OR bayesian -author:

bayes” for the years 1980 to 2010.

ence. WinBUGS is easy to learn and is supported by a large community of active

researchers.

The WinBUGS program requires you to construct a file that contains the model

specification, a file that contains initial values for the model parameters, and a

file that contains the data. The model specification file is most important. For

our binomial example, we set out to obtain samples from the posterior of θ. The

associated WinBUGS model specification code is two lines long:

model{

theta ~ dunif(0,1) # the uniform prior for updating by the data

k ~ dbin(theta,n) # the data; in our example, k = 9 and n = 10

}

In this code, the “∼” or twiddle symbol denotes “is distributed as”, dunif(a,b)

indicates the uniform distribution with parameters a and b, and dbin(theta,n)

indicates the binomial distribution with rate θ and n observations. These and many

other distributions are built in to the WinBUGS program. The “#” or hash sign

is used for comments. As WinBUGS is a declarative language, the order of the two

lines is inconsequential. Finally, note that the values for k and n are not provided

in the model specification file. These values constitute the data and they are stored

in a separate file.

When this code is executed, you obtain a sequence of MCMC samples from the

posterior p (θ | D). Each individual sample depends only on the one that immedi-

ately preceded it, and this is why the entire sequence of samples is called a chain.
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MCMC Iteration

 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

θ

Chain 1

Chain 2

Chain 3

tFig. 1.3 Three MCMC chains for rate parameter θ, after observing 9 correct responses and 1

incorrect response.

In more complex models, it may take some time before a chain converges from its

starting value to what is called its stationary distribution. To make sure that we

only use those samples that come from the stationary distribution, and hence are

unaffected by the starting values, it is good practice to diagnose convergence. This

is an active area of research, and there is an extensive set of practical recommenda-

tions regarding achieving and measuring convergence (e.g., Gelman, 1996; Gelman

& Hill, 2007).

A number of worked examples in this book deal with convergence issues in de-

tail, but we mention three important concepts now. One approach is to run multiple

chains, checking that their different initial starting values do not affect the distri-

butions they sample from. Another is to discard the first samples from each chain,

when those early samples are sensitive to the initial values. These discarded sam-

ples are called burn-in samples. Finally, it can also be helpful not to record every

sample taken in a chain, but every second, or third, or tenth, or some other subset

of samples. This is known as thinning , a procedure that is helpful when the chain

moves slowly through the parameter space and, consequently, the current sample in

the MCMC chain depends highly on the previous one. In such cases, the sampling

process is said to be autocorrelated.

For example, Figure 1.3 shows the first 100 iterations for three chains that were

set up to draw values from the posterior for θ. It is evident that the three chains

are “mixing” well, suggesting early convergence. After assuring ourselves that the

chains have converged, we can use the sampled values to plot a histogram, construct

a density estimate, and compute values of interest. To illustrate, the three chains

from Figure 1.3 were run for 3000 iterations each, for a total of 9000 samples from

the posterior of θ. Figure 1.4 plots a histogram for the posterior. To visualize how the
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density estimator. Based on this density estimator, the mode of the posterior

distribution for θ is approximately 0.89, and the 95% credible interval extends from

0.59 to 0.98, closely matching the analytical results from Figure 1.1.

histogram is constructed from the MCMC chains, the bottom panel of Figure 1.4

plots the MCMC chains sideways; the histograms are created by collapsing the

values along the “MCMC iteration” axis and onto the “θ” axis.

In the top panel of Figure 1.4, the thin solid line represent a density estimate.

The mode of the density estimate for the posterior of θ is 0.89, whereas the 95%

credible interval is (0.59, 0.98), matching the analytical result shown in Figure 1.1.

The key point is that the analytical intractabilities that limited the scope of

Bayesian parameter estimation have now been overcome. Using MCMC sampling,

posterior distributions can be approximated to any desired degree of accuracy. This
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Box 1.1 Why isn’t every statistician a Bayesian?

“The answer is simply that statisticians do not know what the Bayesian

paradigm says. Why should they? There are very few universities in the world

with statistics departments that provide a good course in the subject. Only

exceptional graduate students leave the field of their advisor and read for

themselves. A secondary reason is that the subject is quite hard for someone

who has been trained in the sampling-theory approach to understand. . . . The

subject is difficult. Some argue that this is a reason for not using it. But it is

always harder to adhere to a strict moral code than to indulge in loose living.

. . . Every statistician would be a Bayesian if he took the trouble to read the

literature thoroughly and was honest enough to admit that he might have

been wrong.” (Lindley, 1986, pp. 6–7).

book teaches you to use MCMC sampling and Bayesian inference to do research

with cognitive science models and data.

Exercises

Exercise 1.4.1 Use Google and list some other scientific disciplines that use

Bayesian inference and MCMC sampling.

Exercise 1.4.2 The text reads: “Using MCMC sampling, posterior distributions

can be approximated to any desired degree of accuracy.” How is this possible?

1.5 Goal of this book

The goal of this book is to show, by working through concrete examples, how

Bayesian inference can be applied to modeling problems in cognitive science.

Bayesian data analysis has received increasing attention from cognitive scientists,

and for good reason.

1. Bayesian inference is flexible. This means that Bayesian models can respect the

complexity of the data, and of the processes being modeled. For example, data

analysis may require the inclusion of a contaminant process, a multi-level struc-

ture, or an account of missing data. Using the Bayesian approach, these sorts of

additions are relatively straightforward.

2. Bayesian inference is principled. This means that all uncertainty is accounted for

appropriately, and no useful information is discarded.
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Box 1.2 Common sense expressed in numbers

“The Bayesian approach is a common sense approach. It is simply a set of

techniques for orderly expression and revision of your opinions with due regard

for internal consistency among their various aspects and for the data. Natu-

rally, then, much that Bayesians say about inference from data has been said

before by experienced, intuitive, sophisticated empirical scientists and statis-

ticians. In fact, when a Bayesian procedure violates your intuition, reflection

is likely to show the procedure to have been incorrectly applied.” (Edwards et

al., 1963, p. 195).

3. Bayesian inference yields intuitive conclusions. This reflects the fact that

Bayesian inference is normative, stipulating how rational agents should change

their opinion in the light of incoming data. Of course, it can nevertheless happen

that you occasionally find a Bayesian conclusion to be surprising or counter-

intuitive. You are then left with one of two options—either the analysis was not

carried out properly (e.g., errors in coding, errors in model specification) or your

intuition is in need of schooling.

4. Bayesian inference is easy to undertake. This means that with the software pack-

ages used in this book, Bayesian inference is often (but not always!) a trivial

exercise. This frees up resources so more time can be spent on the substantive

issues of developing theories and models, and interpreting results when they are

applied to data.

At this point you may be champing at the bit, eager to apply the tools of Bayesian

analysis to the kinds of cognitive models that interest you. But first we need to cover

the basics and this is why Parts I, II, and III prepare you for the more complicated

case studies presented in Part IV. This is not to say that the “elementary” material

in Parts I, II, and III are devoid of cognitive context. On the contrary, we have tried

to highlight how even the binomial model finds meaningful application in cognitive

science.

Perhaps the material covered in this first chapter is still relatively abstract for

you. Perhaps you are currently in a state of confusion. Perhaps you think that this

book is too difficult, or perhaps you do not yet see clearly how Bayesian inference

can help you in your own work. These feelings are entirely understandable, and this

is why this book contains more than just this one chapter. Our teaching philosophy

is that you learn the most by doing, not by reading. So if you still do not know

exactly what a posterior distribution is, do not despair. The chapters in this book

make you practice core Bayesian inference tasks so often that at the end you will

know exactly what a posterior distribution is, whether you like it or not. Of course,

we rather hope you like it, and we also hope that you will discover that Bayesian

statistics can be exciting, rewarding, and, indeed, fun.
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1.6 Further reading

This section provides some references for further reading. We first list Bayesian

textbooks and seminal papers, then some texts that specifically deal with Win-

BUGS. We also note that Smithson (2010) presents a useful comparative review of

six introductory textbooks on Bayesian methods.

1.6.1 Bayesian statistics

This section contains an annotated bibliography of Bayesian articles and books that

we believe are particularly useful or inspiring.

• Berger, J. O. & Wolpert, R. L. (1988). The Likelihood Principle (2nd edn.). Hayward,

CA: Institute of Mathematical Statistics. This is a great book if you want to

understand the limitations of orthodox statistics. Insightful and fun.

• Bolstad, W. M. (2007). Introduction to Bayesian Statistics (2nd edn.). Hoboken, NJ:

Wiley. Many books claim to introduce Bayesian statistics, but forget to state on

the cover that the introduction is “for statisticians” or “for those comfortable

with mathematical statistics.” The Bolstad book is an exception, as it does

not assume much background knowledge.

• Dienes, Z. (2008). Understanding Psychology as a Science: An Introduction to

Scientific and Statistical Inference. New York: Palgrave Macmillan. An easy-to-

understand introduction to inference that summarizes the differences between

the various schools of statistics. No knowledge of mathematical statistics is

required.

• Gamerman, D. & Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simu-

lation for Bayesian Inference. Boca Raton, FL: Chapman & Hall/CRC. This book

discusses the details of MCMC sampling; a good book, but too advanced for

beginners.

• Gelman, A. & Hill, J. (2007). Data Analysis Using Regression and Multi-

level/Hierarchical Models. New York: Cambridge University Press. This book is an

extensive practical guide on how to apply Bayesian regression models to data.

WinBUGS code is provided throughout the book. Andrew Gelman also has an

active blog that you might find interesting: http://andrewgelman.com/

• Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov Chain Monte

Carlo in Practice. Boca Raton, FL: Chapman & Hall/CRC. A citation classic in

the MCMC literature, this book features many short chapters on all kinds of

sampling-related topics: theory, convergence, model selection, mixture models,

and so on.

• Gill, J. (2002). Bayesian Methods: A Social and Behavioral Sciences Approach. Boca

Raton, FL: CRC Press. A well-written book that covers a lot of ground. Readers

need some background in mathematical statistics.
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• Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Dordrecht, The

Netherlands: Springer. A clear and well-written introduction to Bayesian infer-

ence, with accompanying R code, requiring some familiarity with mathematical

statistics.

• Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge, UK:

Cambridge University Press. Jaynes was one of the most ardent supporters of ob-

jective Bayesian statistics. The book is full of interesting ideas and compelling

arguments, as well as being laced with Jaynes’ acerbic wit, but it requires some

mathematical background to appreciate all of the content.

• Jeffreys, H. (1939/1961). Theory of Probability. Oxford, UK: Oxford University Press.

Sir Harold Jeffreys is the first statistician who exclusively used Bayesian meth-

ods for inference. Jeffreys also invented the Bayesian hypothesis test, and was

generally far ahead of his time. The book is not always an easy read, in part

because the notation is somewhat outdated. Strongly recommended, but only

for those who already have a solid background in mathematical statistics and

a firm grasp of Bayesian thinking. See www.economics.soton.ac.uk/staff/

aldrich/jeffreysweb.htm

• Lee, P. M. (2012). Bayesian Statistics: An introduction (4th edn.). Chichester, UK:

John Wiley. This well-written book illustrates the core tenets of Bayesian infer-

ence with simple examples, but requires a background in mathematical statis-

tics.

• Lindley, D. V. (2000). The philosophy of statistics. The Statistician, 49, 293–337.

One the godfathers of Bayesian statistics explains why Bayesian inference is

right and everything else is wrong. Peter Armitage commented on the paper:

“Lindley’s concern is with the very nature of statistics, and his argument un-

folds clearly, seamlessly and relentlessly. Those of us who cannot accompany

him to the end of his journey must consider very carefully where we need to

dismount; otherwise we shall find ourselves unwittingly at the bus terminus,

without a return ticket.”

• Marin, J.-M. & Robert, C. P. (2007). Bayesian Core: A Practical Approach to Com-

putational Bayesian Statistics. New York: Springer. This is a good book by two

reputable Bayesian statisticians. The book is beautifully typeset, includes an

introduction to R, and covers a lot of ground. A firm knowledge of mathemat-

ical statistics is required. The exercises are challenging.

• McGrayne, S. B. (2011). The Theory that Would not Die: How Bayes’ Rule Cracked

the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant

from Two Centuries of Controversy. New Haven, CT: Yale University Press. A

fascinating and accessible overview of the history of Bayesian inference.

• O’Hagan, A. & Forster, J. (2004). Kendall’s Advanced Theory of Statistics Vol.

2B: Bayesian Inference (2nd edn.). London: Arnold. If you are willing to read

only a single book on Bayesian statistics, this one is it. The book requires a

background in mathematical statistics.

• Royall, R. M. (1997). Statistical Evidence: A Likelihood Paradigm. London: Chapman

& Hall. This book describes the different statistical paradigms, and highlights
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the deficiencies of the orthodox schools. The content can be appreciated with-

out much background knowledge in statistics. The main disadvantage of this

book is that the author is not a Bayesian. We still recommend the book, which

is saying something.

1.6.2 WinBUGS texts

• Kruschke, J. K. (2010). Doing Bayesian Data Analysis: A Tutorial Introduction with

R and BUGS. Burlington, MA: Academic Press. This is one of the first Bayesian

books geared explicitly towards experimental psychologists and cognitive sci-

entists. Kruschke explains core Bayesian concepts with concrete examples and

OpenBUGS code. The book focuses on statistical models such as regression

and ANOVA, and provides a Bayesian approach to data analysis in psychol-

ogy, cognitive science, and empirical sciences more generally.

• Lee, S.-Y. (2007). Structural Equation Modelling: A Bayesian Approach. Chichester,

UK: John Wiley. After reading the first few chapters from this book, you may

wonder why not everybody uses WinBUGS for their structural equation mod-

eling.

• Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS

Book: A Practical Introduction to Bayesian Analysis. Boca Raton, FL: Chapman &

Hall/CRC Press. Quoted from the publisher: “Bayesian statistical methods have

become widely used for data analysis and modelling in recent years, and the

BUGS software has become the most popular software for Bayesian analysis

worldwide. Authored by the team that originally developed this software, The

BUGS Book provides a practical introduction to this program and its use. The

text presents complete coverage of all the functionalities of BUGS, including

prediction, missing data, model criticism, and prior sensitivity. It also features

a large number of worked examples and a wide range of applications from

various disciplines.”

• Ntzoufras, I. (2009). Bayesian Modeling using WinBUGS. Hoboken, NJ: John Wiley.

Provides an accessible introduction to WinBUGS. The book also presents a va-

riety of Bayesian modeling examples, with an emphasis on Generalized Linear

Models. See www.ruudwetzels.com for a detailed review.

• Spiegelhalter, D., Best, N., & Lunn, D. (2003). WinBUGS User Manual 1.4.

Cambridge, UK: MRC Biostatistic Unit. Provides an introduction to WinBUGS,

including a useful tutorial and various tips and tricks for new users. The user

manual has effectively been superseded by The BUGS Book mentioned above.
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with Dora Matzke

Throughout this book, you will use the WinBUGS (Lunn et al., 2000, 2009) software

to work your way through the exercises. Although it is possible to do the exercises

using the graphical user interface provided by the WinBUGS package, you can also

use the Matlab or R programs to interact with WinBUGS.

In this chapter, we start by working through a concrete example using just Win-

BUGS. This provides an introduction to the WinBUGS interface, and the basic

theoretical and practical components involved in Bayesian graphical model analy-

sis. Completing the example will also quickly convince you that you do not want

to rely on WinBUGS as your primary means for handling and analyzing data. It is

not especially easy to use as a graphical user interface, and does not have all of the

data management and visualization features needed for research.

Instead, we encourage you to choose either Matlab or R as your primary re-

search computing environment, and use WinBUGS as an “add-on” that does the

computational sampling part of analyses. Some WinBUGS interface capabilities

will remain useful, especially in the exploratory stages of research. But either Mat-

lab or R will be primary. Matlab and R code for every example in this book, as

well as the scripts that implement the models in WinBUGS, are all available at

www.bayesmodels.com.

This chapter first does a concrete example in WinBUGS, then re-works it in both

Matlab and R. You should pay particular attention to the section that features your

preferred research software. You will then be ready for the following chapters, which

assume you are working in either Matlab or R, but understand the basics on the

WinBUGS interface.

2.1 Installing WinBUGS,Matbugs, R, andR2WinBugs

2.1.1 Installing WinBUGS

WinBUGS is currently free software, and is available at http://www.mrc-bsu.cam.

ac.uk/bugs/. Download the most recent version, including any patches, and make

sure you download and apply the registration key. Some of the exercises in this

book might work without the registration key, but some of them will not. You can

download WinBUGS and the registration key directly from http://www.mrc-bsu.

cam.ac.uk/bugs/winbugs/contents.shtml. A note to Windows 7 users: when you

16
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install the patch and the registration key, make sure that you have first opened

WinBUGS using the “Run as administrator” option (right-click on the WinBUGS

icon to make this option available); next, go to File → New, copy-paste the code

(i.e., patches or key), and then select Tools→ Decode→ Decode All.

2.1.2 Installing Matlab and Matbugs

Matlab is a commercial software package, and is available at http://www.

mathworks.com/. As far as we know, any reasonably recent version of Matlab should

let you do the exercises in this book. Also, as faras we know, no toolboxes are re-

quired. To give Matlab the ability to interact with WinBUGS, download the freely

available matbugs.m function and put it in your Matlab working directory. You can

download matbugs.m directly from https://code.google.com/p/matbugs.

2.1.3 Installing R and R2WinBUGS

R is a free software package, and is available at http://www.r-project.org/:

click “download R,” choose your download location, and proceed from there. Al-

ternatively, you can download the Windows version of R directly from http:

//cran.xl-mirror.nl/. To give R the ability to interact with WinBUGS, you

have to install the R2WinBUGS package. To install the R2WinBUGS package, start

R and select the Install Package(s) option in the Packages menu. Once you

choose your preferred CRAN mirror, select R2WinBUGS in the Packages window

and click on OK.

2.2 Using the applications

2.2.1 An example with the binomial distribution

We will illustrate the use of WinBUGS, Matbugs, and R2WinBUGS by means

of the same simple example from Chapter 1, which involved inferring the rate of

success for a binary process. A binary process is anything where there are only two

possible outcomes. An inference that is often important for these sorts of processes

is the underlying rate at which the process takes one value rather than the other.

Inferences about the rate can be made by observing how many times the process

takes each value over a number of trials.

Suppose that one of the outcomes (e.g., the number of successes) happens on

k out of n trials. These are known, or observed, data. The unknown variable of

interest is the rate θ at which the outcomes are produced. Assuming that what

happened on one trial does not influence the other trials, the number of successes

k follows a binomial distribution, k ∼ Binomial
(
θ, n

)
. This relationship means that

by observing the k successes out of n trials, it is possible to update our knowledge
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Box 2.1 Our graphical model notation

There is no completely agreed standard notation for representing graphical

models visually. It is always the case that nodes represent variables, and the

graph structure connecting them represents dependencies. And it is almost

always the case that plates are used to indicate replication. Beyond that

core, there are regularities and family resemblances in the approaches used

by numbers of authors and fields, but not adherence to a single standard. In

this book, we make distinctions between: continuous versus discrete valued

variables, using circular and square nodes; observed and unobserved vari-

ables, using shaded and unshaded nodes; and stochastic versus deterministic

variables, using single- and double-bordered nodes. Alternative or additional

conventions are possible, and could be useful. For example, our notation does

not distinguish between observed variables that are data (e.g., the decision

a subject makes in an experiment) and observed variables that are known

properties of an experimental design (e.g., the number of trials a subject

completes). It is also possible to argue that, for deterministic variables, it is

the functions that are deterministic, and so the arrows in the graph, rather

than the nodes, should be double-bordered.

about the rate θ. The basic idea of Bayesian analysis is that what we know, and

what we do not know, about the variables of interest is always represented by

probability distributions. Data like k and n allow us to update prior distributions

for the unknown variables into posterior distributions that incorporate the new

information.

θ

k

n

θ ∼ Beta(1, 1)

k ∼ Binomial(θ, n)

tFig. 2.1 Graphical model for inferring the rate of a binary process.

The graphical model representation of our binomial example is shown in Fig-

ure 2.1. The nodes represent all the variables that are relevant to the problem. The

graph structure is used to indicate dependencies between the variables, with chil-

dren depending on their parents. We use the conventions of representing unobserved
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variables without shading and observed variables with shading, and continuous vari-

ables with circular nodes and discrete variables with square nodes.

Thus, the observed discrete numbers of successes k and number of trials n are

represented by shaded and square nodes, and the unknown continuous rate θ is

represented by an unshaded and circular node. Because the number of successes k

depends on the number of trials n and on the rate of success θ, the nodes represent-

ing n and θ are directed towards the node representing k. We will start with the

prior assumption that all possible rates between 0 and 1 are equally likely. We will

thus assume a uniform prior θ ∼ Uniform
(
0, 1

)
, which can equivalently be written

in terms of a beta distribution as θ ∼ Beta
(
1, 1

)
.

One advantage of using the language of graphical models is that it gives a com-

plete and interpretable representation of a Bayesian probabilistic model. Another

advantage is that WinBUGS can easily implement graphical models, and its various

built-in MCMC algorithms are then able to do all of the inferences automatically.

2.2.2 Using WinBUGS

WinBUGS requires the user to construct three text files: one that contains the

data, one that contains the starting values for the model parameters, and one that

contains the model specification. The WinBUGS model code associated with our

binomial example is available at www.bayesmodels.com, and is shown below:

# Inferring a Rate
model{

# Prior Distribution for Rate Theta
theta ~ dbeta(1,1)
# Observed Counts
k ~ dbin(theta,n)

}

Note that the uniform prior on θ is implemented here as θ ∼ Beta
(
1, 1

)
. An

alternative specification may seem more direct, namely θ ∼ Uniform
(
0, 1

)
, denoted

dunif(0,1) in WinBUGS. These two distributions are mathematically equivalent,

but in our experience WinBUGS has fewer computational problems with the beta

distribution implementation.

Implementing the model shown in Figure 2.1, and obtaining samples from the

posterior distribution of θ, can be done by following the sequence of steps outlined

below. At the present stage, do not worry about some of the finer details, as these

will be clarified in the remainder of this book. Right now, the best you can do is

simply to follow the instructions below and start clicking away.

1. Copy the model specification text above and paste it in a text file. Save the file,

for example as Rate 1.txt.

2. Start WinBUGS. Open your newly created model specification file by select-

ing the Open option in the File menu, choosing the appropriate directory, and

double-clicking on the model specification file. Do not forget to select files of

type “txt,” or you might be searching for a long time. Now check the syntax
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of the model specification code by selecting the Specification option in the

Model menu. Once the Specification Tool window is opened, as shown in

Figure 2.2, highlight the word “model” at the beginning of the code and click on

check model. If the model is syntactically correct and all parameters are given

priors, the message “model is syntactically correct” will appear in the status bar

all the way in the bottom left corner of the WinBUGS window. (But beware:

the letters are very small and difficult to see.)

3. Create a text file that contains the data. The content of the file should look like

this:

list(
k = 5,
n = 10
)

Save the file, for example as Data.Rate 1.txt.

4. Open the data file and load the data. To open the data file, select the Open

option in the File menu, select the appropriate directory, and double-click on

the data file. To load the data, highlight the word “list” at the beginning of the

data file and click on load data in the Specification Tool window, as shown

in Figure 2.2. If the data are successfully loaded, the message “data loaded”

will appear in the status bar.

5. Set the number of chains. Each chain is an independent run of the same model

with the same data, although you can set different starting values for each chain.1

Considering multiple chains provides a key test of convergence. In our binomial

example, we will run two chains. To set the number of chains, type “2” in the field

labelled num of chains in the Specification Tool window, shown in Figure

2.2.

6. Compile the model. To compile the model, click on compile in the

Specification Tool window, shown in Figure 2.2. If the model is success-

fully compiled, the message “model compiled” will appear in the status bar.

7. Create a text file that contains the starting values of the unobserved variables

(i.e., just the parameter θ for this model).2 The content of the file should look

like this:

list(
theta = 0.1
)
list(
theta = 0.9
)

1 Running multiple chains is the best and easiest way to ensure WinBUGS uses different random
number sequences in sampling. Doing a single-chain analysis multiple times can produce the

same results because the random number sequence is identical.
2 If you do not specify starting values yourself, WinBUGS will create them for you automatically.

These automatic starting values are based on the prior and may occasionally result in numerical
instability and program crashes. It is therefore safer to assign a starting value for all unobserved

variables, and especially for variables at nodes “at the top” of the graphical model, which have
no parents.
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tFig. 2.2 The WinBUGS model specification tool.

Note that there are two initial values, one for each chain. Save the file, for

example as Start.values.txt.

8. Open the file that contains the starting values by selecting the Open option in

the File menu, selecting the appropriate directory, and double-clicking on the

file. To load the starting value of θ for the first chain, highlight the word “list”

at the beginning of the file and click on load inits in the Specification

Tool window, shown in Figure 2.2. The status bar will now display the message

“chain initialized but other chain(s) contain uninitialized variables.” To load the

starting value for the second chain, highlight the second “list” command and

click on load inits once again. If all starting values are successfully loaded,

the message “model is initialized” will appear in the status bar.

9. Set monitors to store the sampled values of the parameters of interest. To set a

monitor for θ, select the Samples option from the Inference menu. Once the

Sample Monitor Tool window, shown in Figure 2.3, is opened, type “theta” in

the field labeled node and click on set.

10. Specify the number of samples you want to record. To do this, you first have to

specify the total number of samples you want to draw from the posterior of θ,

and the number of burn-in samples that you want to discard at the beginning

of a sampling run. The number of recorded samples equals the total number of

samples minus the number of burn-in samples. In our binomial example, we will
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not discard any of the samples and will set out to obtain 20,000 samples from the

posterior of θ. To specify the number of recorded samples, type “1” in the field

labeled beg (i.e., WinBUGS will start recording from the first sample) and type

“20000” in the field labeled end in the Sample Monitor Tool window, shown in

Figure 2.3.

tFig. 2.3 The WinBUGS sample monitor tool.

11. Set “live” trace plots of the unobserved parameters of interest. WinBUGS allows

you to monitor the sampling run in real-time. This can be useful on long sampling

runs, for debugging, and for diagnosing whether the chains have converged. To

set a “live” trace plot of θ, click on trace in the Sample Monitor Tool window,

shown in Figure 2.3, and wait for an empty plot to appear on the screen. Once

WinBUGS starts to sample from the posterior, the trace plot of θ will appear

live on the screen.

12. Specify the total number of samples that you want to draw from the posterior.

This is done by selecting the Update option from the Model menu. Once the

Update Tool window, as in Figure 2.4, is opened, type “20000” in the field

labeled updates. Typically, the number you enter in the Update Tool window

will correspond to the number you entered in the end field of the Sample Monitor

Tool.

13. Specify how many samples should be drawn between the recorded samples.

You can, for example, specify that only every second drawn sample should be

recorded. This ability to “thin” a chain is important when successive samples

are not independent but autocorrelated. In our binomial example, we will record

every sample that is drawn from the posterior of θ. To specify this, type “1” in

the field labeled thin in the Update Tool window, shown in Figure 2.4, or in

the Sample Monitor Tool window, shown in Figure 2.3. To record only every

10th sample, the thin field needs to be set to 10.

14. Specify the number of samples after which WinBUGS should refresh its display.

To this end, type “100” in the field labeled refresh in the Update Tool window,

shown in Figure 2.4.

15. Sample from the posterior. To sample from the posterior of θ, click on update

in the Update Tool window, shown in Figure 2.4. During sampling, the message
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“model is updating” will appear in the status bar. Once the sampling is finished,

the message “updates took x s” will appear in the status bar.

tFig. 2.4 Update Tool.

16. Specify the output format. WinBUGS can produce two types of output; it can

open a new window for each new piece of output, or it can paste all output

into a single log file. To specify the output format for our binomial example,

select Output options from the Options menu, and click on log in the Output

options window.

17. Obtain summary statistics of the posterior distribution. To request summary

statistics based on the sampled values of θ, select the Samples option in the

Inference menu, and click on stats in the Sample Monitor Tool window,

shown in Figure 2.3. WinBUGS will paste a table reporting various summary

statistics for θ in the log file.

18. Plot the posterior distribution. To plot the posterior distribution of θ, click on

density in the Sample Monitor Tool window, shown in Figure 2.3. WinBUGS

will paste the “kernel density” of the posterior distribution of θ in the log file.3

Figure 2.5 shows the log file that contains the results for our binomial example.

The first five lines of the log file document the steps taken to specify and initialize

the model. The first output item is the Dynamic trace plot that allows the θ

variable to be monitored during sampling, and is useful for diagnosing whether the

chains have reached convergence. In this case, we can be reasonably confident that

convergence has been achieved because the two chains, shown in different colors, are

overlapping one another.4 The second output item is the Node statistics table

that presents the summary statistics for θ. Among other things, the table shows

the mean, the standard deviation, and the median of the sampled values of θ. The

last output item is the Kernel density plot that shows the posterior distribution

of θ.

How did WinBUGS produce the results in Figure 2.5? The model specification

file implemented the graphical model from Figure 2.1, saying that there is a rate

θ with a uniform prior, that generates k successes out of n observations. The data

file supplied the observed data, setting k = 5 and n = 10. WinBUGS then sampled

3 A kernel density is a fancy smoothed histogram. Here, it is a smoothed histogram for the

sampled values of θ.
4 Note that the Dynamic trace plot only shows 200 samples. To have the entire time series of

sampled values plotted in the log file, click on history in the Sample Monitor Tool window.
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tFig. 2.5 Example of an output log file.

from the posterior of the unobserved variable θ. “Sampling” means drawing a set

of values, so that the relative probability that any particular value will be sampled

is proportional to the density of the posterior distribution at that value. For this

example, the posterior samples for θ are a sequence of numbers like 0.5006, 0.7678,

0.3283, 0.3775, 0.4126, . . . A histogram of these values is an approximation to the

posterior distribution of θ.

Error messages

If the syntax of your model file is incorrect or the data and starting values are

incompatible with your model specification, WinBUGS will balk and produce an

error message. Error messages can provide useful information for debugging your

WinBUGS code.5 The error messages are displayed in the bottom left corner of the

status bar, in very small letters.

Suppose, for example, that you mistakenly use the “assign” operator (<-) to

specify the distribution of the prior on the rate parameter θ and the distribution

of the observed data k:

5 Although nobody ever accused WinBUGS of being user-friendly in this regard. Many error
messages seem to have been written by the same people who did the Dead Sea Scrolls.
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Box 2.2 Do I need or want to understand computational sampling?

Some people find the idea that WinBUGS looks after sampling, and that

there is no need to understand the computational routines involved in detail,

to be a relief. Others find it deeply disturbing. For the disturbed, there are

many Bayesian texts that give detailed accounts of Bayesian inference us-

ing computational sampling. Start with the summary for cognitive scientists

presented in Chapter 7 from Kruschke (2010a). Continue with the tutorial-

style overview in Andrieu et al. (2003) or the relevant chapters in the ex-

cellent book by MacKay (2003), which is freely available on the Web, and

move on to the more technical references such as Gilks et al. (1996), Nt-

zoufras (2009), and Gamerman and Lopes (2006). You can also browse the

internet for more information; for example, there is an instructive applet at

http://www.lbreyer.com/classic.html, and an excellent YouTube tuto-

rial at http://www.youtube.com/watch?v=4gNpgSPal_8.

model{

#Prior Distribution for Rate Theta

theta <- dbeta(1,1)

#Observed Counts

k <- dbin(theta,n)

}

As WinBUGS requires you to use the tilde symbol “∼” to denote the distributions

of the prior and the data, it will produce the following error message: unknown type

of logical function, as shown in Figure 2.6. As another example, suppose that

you mistype the distribution of the observed counts k, and you mistakenly specify

the distribution of k as follows:

k ~ dbon(theta,n)

WinBUGS will not recognize dbon as an existing probability distribution, and will

produce the following error message: unknown type of probability density, as

shown in Figure 2.7.6

With respect to errors in the data file, suppose that your data file contains the

following data: k = -5 and n = 10. Note, however, that k is the number of successes

in the 10 trials and it is specified to be binomially distributed. WinBUGS therefore

expects the value of k to lie between 0 and n and it will produce the following error

message: value of binomial k must be between zero and order of k.

6 On Windows machines, the error message is accompanied by a penetrating “system beep.”

After experiencing a few such system beeps you will want to turn them off. Browse the web for
information on how to do this, or go straight to http://www.howtogeek.com/howto/windows/

turn-off-the-annoying-windows-xp-system-beeps/. The people sitting next to you will be
grateful too.
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tFig. 2.6 WinBUGS error message as a result of incorrect logical operators. Note the small

letters in the bottom left corner of the status bar.

tFig. 2.7 WinBUGS error message as a result of a mis-specified probability density. Note the

small letters in the bottom left corner of the status bar.

Finally, with respect to erroneous starting values, suppose that you chose 1.5 as

the starting value of θ for the second chain. Because θ is the probability of getting 5

successes in 10 trials, WinBUGS expects the starting value for θ to lie between 0 and
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Box 2.3 Changing the sampler

WinBUGS uses a suite of samplers, each fine-tuned to a particular class of

statistical problems. Occasionally it may be worth the effort to change the

default settings and edit the Updater/Rsrc/Methods.odc file. Any such edit-

ing should be done with care, and only after you have made a copy of the

original Methods.odc file that contains the default settings. The advantage of

changing the sampler is that it may circumvent traps or crashes. For exam-

ple, the WinBUGS manual mentions that problems with the adaptive rejection

sampler DFreeARS can sometimes be solved by replacing, for the log concave

class, the method UpdaterDFreeARS by UpdaterSlice. Note for Windows 7

users: you may not be able to save any changes to files in the Updater/Rsrc

directory. Work-around: copy the file to your desktop, edit it, save it, and copy

it back to the Updater/Rsrc directory.

1. Therefore, specifying a value such as 1.5 produces the following error message:

value of proportion of binomial k must be between zero and one.

2.2.3 Using Matbugs

We will use the matbugs function to call the WinBUGS software from within Mat-

lab, and to return the results of the WinBUGS sampling to a Matlab variable for

further analysis. The code we are using to do this is shown below:

% Data
k = 5;
n = 10;

% WinBUGS Parameters
nchains = 2; % How Many Chains?
nburnin = 0; % How Many Burn in Samples?
nsamples = 2e4; % How Many Recorded Samples?
nthin = 1; % How Often is a Sample Recorded?

% Assign Matlab Variables to the Observed WinBUGS Nodes
datastruct = struct(’k’,k,’n’,n);

% Initialize Unobserved Variables
start.theta= [0.1 0.9];

for i=1:nchains
S.theta = start.theta(i); % An Intial Value for the Success Rate
init0(i) = S;

end

% Use WinBUGS to Sample
[samples, stats] = matbugs(datastruct, ...

fullfile(pwd, ’Rate_1.txt’),
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’init’, init0, ’view’, 1, ...
’nChains’, nchains, ’nburnin’, nburnin, ...
’nsamples’, nsamples, ’thin’, nthin, ...
’DICstatus’, 0, ’refreshrate’,100, ...
’monitorParams’, {’theta’}, ...
’Bugdir’, ’C:/Program Files/WinBUGS14’);

Some of the options in the Matbugs function control software input and output:

• datastruct contains the data that you want to pass from Matlab to WinBUGS.

• fullfile gives the name of the text file that contains the WinBUGS scripting

of your graphical model (i.e., the model specification file).

• view controls the termination of WinBUGS. If view is set to 0, WinBUGS is

closed automatically at the end of the sampling. If view is set to 1, WinBUGS

remains open and it pastes the results of the sampling run in a log output

file. To be able to inspect the results in WinBUGS, maximize the log output

file and scroll up to the top of the page. Note that if you subsequently want

WinBUGS to return the results to Matlab, you first have to close WinBUGS.

• refreshrate gives the number of samples after which WinBUGS should refresh

its display.

• monitorParams gives the list of variables that will be monitored and returned to

Matlab in the samples variable.

• Bugdir gives the location of the WinBUGS software.

Other options define the values for the computational sampling parameters:

• init gives the starting values for the unobserved variables.

• nChains gives the number of chains.

• nburnin gives the number of burn-in samples.

• nsamples gives the number of recorded samples that will be drawn from the

posterior.

• thin gives the number of drawn samples between those that are recorded.

• DICstatus gives an option to calculate the Deviance Information Criterion (DIC)

statistic (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). The DIC statistic

is intended to be used for model selection, but is not universally accepted

theoretically among Bayesian statisticians. If DICstatus is set to 0, the DIC

statistic will not be calculated. If it is set to 1, WinBUGS will calculate the

DIC statistic.

How did the WinBUGS script and Matlab work together to produce the posterior

samples of θ? The WinBUGS model specification script defined the graphical model

from Figure 2.1. The Matlab code supplied the observed data and the starting

values for θ, and called WinBUGS. WinBUGS then sampled from the posterior of

θ and returned the sampled values in the Matlab variable samples.theta. This flow

of events is illustrated in Figure 2.9. You can plot the histogram of these sampled

values using Matlab, in the way demonstrated in the script Rate 1.m. It should look

something like the jagged line in Figure 2.8. Because the probability of any value
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tFig. 2.8 Approximate posterior distribution of rate θ for k = 5 successes out of n = 10 trials,

based on 20,000 posterior samples.

appearing in the sequence of posterior samples is decided by its relative posterior

probability, the histogram is an approximation to the posterior distribution of θ.

Besides the sequence of posterior samples, WinBUGS also returns some useful

summary statistics to Matlab. The variable stats.mean gives the mean of the

posterior samples for each unobserved variable, which approximates its posterior

expectation. This can often (but not always, as later exercises explore) be a useful

point-estimate summary of all the information in the full posterior distribution.

Similarly, stats.std gives the standard deviation of the posterior samples for each

unobserved variable.

Finally, WinBUGS also returns the so-called R̂ statistic in the stats.Rhat vari-

able. This is a statistic about the sampling procedure itself, not about the posterior

distribution. The R̂ statistic is proposed by Brooks and Gelman (1998) and it gives

information about convergence. The basic idea is to run two or more chains and

measure the ratio of within-to-between-chain variance. If this ratio is close to 1, the

independent sampling sequences are probably giving the same answer, and there is

reason to trust the results.

Exercise

Exercise 2.2.1 Re-read the section on view. The Matlab code above specifies

view=1. What does this do? Change the code to view=0. What has changed?

2.2.4 Using R2WinBUGS

We will use the bugs() function in the R2WinBUGS package to call the WinBUGS

software from within R, and to return the results of the WinBUGS sampling to an
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R variable for further analysis. Note for Windows 7 users: in order for the samples

to be returned to R successfully, you may need to run R “as administrator” (right-

click on the R icon to reveal this option). The R code we are using to obtain the

WinBUGS samples is as follows:

setwd("D:/WinBUGS_Book/R_codes") #Set working directory, adjust as needed
library(R2WinBUGS) #Load the R2WinBUGS package
bugsdir <- "C:/Program Files/WinBUGS14" #Set WinBUGS directory, adjust as needed

k <- 5
n <- 10

data <- list("k", "n")
myinits <- list(

list(theta = 0.1), #chain 1 starting value
list(theta = 0.9)) #chain 2 starting value

parameters <- c("theta")

samples <- bugs(data, inits=myinits, parameters,
model.file ="Rate_1.txt",
n.chains=2, n.iter=20000, n.burnin=1, n.thin=1,
DIC=T, bugs.directory=bugsdir,
codaPkg=F, debug=F)

Note that lines 1 and 3 (i.e., the setwd line and the bugsdir line) specify the

working directory and the WinBUGS directory, but only for the computer that

runs the code. If you want to run the code on your own computer you need to

modify these lines to match your setup.7

Some of the above options control software input and output:

• data contains the data that you want to pass from R to WinBUGS.

• parameters gives the list of variables that will be monitored and returned to R

in the samples variable.

• model.file gives the name of the text file that contains the WinBUGS scripting

of your graphical model (i.e., the model specification file). Avoid using non-

alphanumeric characters (e.g., “&” and “*”) in the directory and file names.

Also, make sure that the name of the directory that contains the model file is

not too long, otherwise WinBUGS will generate the following error message:

incompatible copy. If WinBUGS fails to locate a correctly specified model

file, try to include the entire path in the model.file argument.

• bugs.directory gives the location of the WinBUGS software.

• codaPkg controls the content of the variable that is returned from WinBUGS.

If codaPkg=F (i.e., codaPkg is set to FALSE), WinBUGS returns a variable

that contains the results of the sampling run. If codaPkg=T (i.e., codaPkg is

set to TRUE), WinBUGS returns a variable that contains the file names of the

7 When the code does not work immediately, check whether you have changed the directories

correctly. The working directory should contain the model file, in this case Rate 1.txt, and the
bugsdir variable should refer to the directory that contains the WinBUGS14.exe file.
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WinBUGS outputs and the corresponding paths. You can access these output

files by means of the R function read.bugs().

• debug controls the termination of WinBUGS. If debug is set to FALSE, Win-

BUGS is closed automatically at the end of the sampling. If debug is set to

TRUE, WinBUGS remains open and it pastes the results of the sampling run

in a log output file. To be able to inspect the results in WinBUGS, maximize

the log output file and scroll up to the top of the page. Note that if you subse-

quently want WinBUGS to return the results in the R samples variable, you

first have to close WinBUGS. In general, you will not be able to use R again

until after you terminate WinBUGS.

The other options define the values for the computational sampling parameters:

• inits assigns starting values to the unobserved variables. If you want WinBUGS

to choose these starting values for you, replace inits=myinits in the call to

bugs with inits=NULL.

• n.chains gives the number of chains.

• n.iter gives the number of samples that will be drawn from the posterior.

• n.burnin gives the number of burn-in samples.

• n.thin gives the number of drawn samples between those that are recorded.

• DIC gives an option to calculate the Deviance Information Criterion (DIC) statis-

tic (Spiegelhalter et al., 2002). The DIC statistic is intended to be used for

model selection, but is not universally accepted theoretically among Bayesian

statisticians. If DIC is set to FALSE, the DIC statistic will not be calculated.

If it is set to TRUE, WinBUGS will calculate the DIC statistic.8

WinBUGS returns the sampled values of θ in the R variable samples. You can

access these values by typing samples$sims.array or samples$sims.list. The

flow of events is illustrated in Figure 2.9.

You can use R to plot the histogram of sampled values of θ, as is demonstrated

in the script Rate 1.R. In addition to the sequence of posterior samples, WinBUGS

also returns to R some useful summary statistics. These summary statistics can be

obtained by typing samples at the R prompt. When you run two or more chains,

the samples command also provides the R̂ statistic, introduced by Brooks and

Gelman (1998). The R̂ statistic provides information about the convergence of the

sampling procedure, not about the posterior distribution. The basic idea is to run

two or more chains and measure the ratio of within-to-between-chain variance. If

this ratio is close to 1, the independent sampling sequences are probably giving the

same answer, and there is reason to trust the results.

8 For some reason, setting DIC equal to FALSE can lead to problems in the communication

between R and WinBUGS. It is safest to set DIC equal to TRUE, even when you are not
interested in the DIC.
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tFig. 2.9 Flowchart that illustrates the interaction between WinBUGS and R (left stream) or

Matlab (right stream). JAGS is a program that is very similar to WinBUGS, described

in the section on OpenBUGS and JAGS.

Exercise

Exercise 2.2.2 Re-read the section on debug. The R code above specifies debug

= F; what does this do? Change the code to debug = T; what has changed?

2.3 Online help, other software, and useful URLs

2.3.1 Online help for WinBUGS

• The BUGS Project webpage http://www.mrc-bsu.cam.ac.uk/bugs/weblinks/

webresource.shtml provides useful links to various articles, tutorial materials,

and lecture notes about Bayesian modeling and the WinBUGS software.

• The BUGS discussion list https://www.jiscmail.ac.uk/cgi-bin/webadmin?

A0=bugs is an online forum where WinBUGS users can exchange tips, ask

questions, and share worked examples.
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2.3.2 For Mac users

You can run WinBUGS on Macs using emulators, such as Darwine. As far as

we know, you need a Dual Core Intel-based Mac and the latest stable version of

Darwine to be able to use R2WinBUGS. Nevertheless, running WinBUGS on a

Mac is not ideal. Mac users are encouraged to use JAGS instead. At the time of

writing, the information below was useful for running WinBUGS on a Mac:

• The Darwine emulator is available at www.kronenberg.org/darwine/.

• The R2WinBUGS reference manual on the R-project webpage cran.r-project.

org/web/packages/R2WinBUGS/index.html provides instructions on how to

run R2winBUGS on Macs.

• Further information for running R2WinBUGS on Macs is available at

ggorjan.blogspot.com/2008/10/runnning-r2winbugs-on-mac.html and

idiom.ucsd.edu/~rlevy/winbugsonmacosx.pdf.

• Further information for running WinBUGS on Macs using a Matlab or R interface

is available at http://www.helensteingroever.com and www.ruudwetzels.

com/macbugs.

2.3.3 For Linux users

You can run WinBUGS under Linux using emulators, such as Wine and CrossOver.

• The BUGS Project webpage provides useful links to various examples on how to

run WinBUGS under Linux www.mrc-bsu.cam.ac.uk/bugs/faqs/contents.

shtml and how to run WinBUGS using a Matlab interface www.mrc-bsu.cam.

ac.uk/bugs/winbugs/remote14.shtml.

• The R2WinBUGS reference manual on the R-project webpage cran.r-project.

org/web/packages/R2WinBUGS/index.html provides instructions on how to

run R2WinBUGS under Linux.

2.3.4 OpenBUGS, Stan, and JAGS

This book is designed primarily to work with WinBUGS. There are, however, al-

ternative programs for generating MCMC samples from graphical models. Both

OpenBUGS, Stan (Stan Development Team, 2013), and JAGS (Plummer, 2003)

may be particularly attractive for Mac and Linux users, since they raise fewer is-

sues than WinBUGS to install and run. The model code for OpenBUGS, Stan, and

JAGS is very similar to WinBUGS, so that the transition from one program to the

other is generally easy. An effort has been made to make most of the examples in

this book compatible with JAGS. Often, in our experience, sampling is much faster

in JAGS than it is in WinBUGS.

• OpenBUGS is available from http://www.openbugs.info/w/.

• Stan is available from http://mc-stan.org/.
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• JAGS is available from http://mcmc-jags.sourceforge.net/.

• To give R the ability to interact with JAGS, you have to install the rjags pack-

age, and, optionally, the R2jags package. To ensure that you install the lat-

est version of the rjags package, the safest procedure is to first Google the

terms rjags CRAN, go to a website such as http://cran.r-project.org/web/

packages/rjags/index.html, and—when using Windows—download the

package zip file. Then start R, go to the Packages menu, choose Install

package(s) from local zip file..., and select the package zip file you

just downloaded. To check whether the installation was successful, type

library(rjags) at the R prompt. To install the R2jags package, you can

use the standard installation procedure: start R and select the Install

Package(s) option in the Packages menu. After choosing your preferred

CRAN mirror, select R2jags in the Packages window and click on OK.

• To give Matlab the ability to interact with JAGS, download the freely available

matjags.m function and put it in your Matlab working directory. You can

download matjags.m directly from http://psiexp.ss.uci.edu/research/

programs_data/jags/.



PART II

PARAMETER ESTIMATION

Today’s posterior is tomorrow’s prior.

Lindley, 2000, p. 301





3 Inferences with binomials

3.1 Inferring a rate

Our first problem completes the introductory example in Chapter 2, and involves

inferring the underlying success rate for a binary process. The graphical model is

shown again in Figure 3.1. Recall that shaded nodes indicate known values, while

unshaded nodes represent unknown values, and that circular nodes correspond to

continuous values, while square nodes correspond to discrete values.

The goal of inference in the graphical model is to determine the posterior distri-

bution of the rate θ, having observed k successes from n trials. The analysis starts

with the prior assumption that all possible rates between 0 and 1 are equally likely.

This corresponds to the uniform prior distribution θ ∼ Uniform
(
0, 1

)
, which can

equivalently be written in terms of a beta distribution as θ ∼ Beta
(
1, 1

)
.

θ

k

n

θ ∼ Beta(1, 1)

k ∼ Binomial(θ, n)

tFig. 3.1 Graphical model for inferring the rate θ of a binary process.

The script Rate 1.txt implements the graphical model in WinBUGS. The script

is available at www.bayesmodels.com and is shown below:

# Inferring a Rate
model{

# Prior Distribution for Rate Theta
theta ~ dbeta(1,1)
# Observed Counts
k ~ dbin(theta,n)

}

The code Rate 1.m for Matlab or Rate 1.R for R, both available at www.

bayesmodels.com, sets k = 5 and n = 10 and calls WinBUGS to sample from

the graphical model. WinBUGS then returns to Matlab or R the posterior samples

37
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Box 3.1 Beta distributions as conjugate priors

One of the nice properties of using the θ ∼ Beta
(
α, β

)
prior distribution for

a rate θ is that it has a natural interpretation. The α and β values can be

thought of as counts of, respectively, “prior successes” and “prior failures.”

This means that using a θ ∼ Beta
(
3, 1

)
prior corresponds to having the prior

information that 4 previous observations have been made, and 3 of them

were successes. Or, more elaborately, starting with a θ ∼ Beta
(
3, 1

)
is the

same as starting with a θ ∼ Beta
(
1, 1

)
, and then seeing data giving two

more successes (i.e., the posterior distribution in the second scenario will be

the same as the prior distribution in the first). As always in Bayesian analy-

sis, inference starts with prior information, and updates that information—by

changing the probability distribution representing the uncertain information—

as more information becomes available. When a type of likelihood function

(in this case, the binomial) does not change the type of distribution (in this

case, the beta) going from the prior to the posterior, they are said to have a

“conjugate” relationship. This property is valued a lot in analytic approaches

to Bayesian inference, because it makes for tractable calculations. It is not so

important in the computational approaches emphasized in this book, because

sampling methods can handle much more general relationships between pa-

rameter distributions and likelihood functions. But conjugacy is still useful in

computational approaches because of the natural semantics it gives in setting

prior distributions.

from θ. The Matlab or R code also plots the posterior distribution of the rate θ. A

histogram of the samples looks something like the jagged line in Figure 3.2.

Exercises

Exercise 3.1.1 Carefully consider the posterior distribution for θ given k = 5

successes out of n = 10 trials. Based on a visual impression, what is your

estimate of the probability that the rate θ is higher than 0.4 but smaller than

0.6? How did you arrive at your estimate?

Exercise 3.1.2 Consider again the posterior distribution for θ given k = 5 suc-

cesses out of n = 10 trials. Based on a visual impression, what is your estimate

of how much more likely it is that the rate θ is equal to 0.5 rather than 0.7?

How did you arrive at your estimate?

Exercise 3.1.3 Alter the data to k = 50 and n = 100, and compare the posterior

for the rate θ to the original with k = 5 and n = 10.

Exercise 3.1.4 For both the k = 50, n = 100 and k = 5, n = 10 cases just

considered, re-run the analyses with many more samples (e.g., 10 times as

many) by changing the nsamples variable in Matlab, or the n.iter variable
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tFig. 3.2 Posterior distribution of rate θ for k = 5 successes out of n = 10 trials.

in R. This will take some time, but there is an important point to understand.

What controls the width of the posterior distribution (i.e., the expression

of uncertainty in the rate parameter θ)? What controls the quality of the

approximation of the posterior (i.e., the smoothness of the histograms in the

figures)?

Exercise 3.1.5 Alter the data to k = 99 and n = 100, and comment on the shape

of the posterior for the rate θ.

Exercise 3.1.6 Alter the data to k = 0 and n = 1, and comment on what this

demonstrates about the Bayesian approach.

3.2 Difference between two rates

Now suppose that we have two different processes, producing k1 and k2 successes

out of n1 and n2 trials, respectively. First, we will make the assumption that the

underlying rates are different, so they correspond to different latent variables θ1
and θ2. Our interest is in the values of these rates, as estimated from the data, and

in the difference δ = θ1 − θ2 between the rates.

The graphical model representation for this problem is shown in Figure 3.3. The

new notation is that the deterministic variable δ is shown by a double-bordered

node. A deterministic variable is one that is defined in terms of other variables,

and inherits its distribution from them. Computationally, deterministic nodes are
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Box 3.2 Interpreting distributions

Since the essence of Bayesian inference is using probability distributions to

represent uncertainty, it is important to be able to interpret probability mass

functions and probability density functions. Probability mass functions are for

discrete variables, which take a finite number of values, while probability den-

sity functions are for continuous variables, which take infinitely many values.
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The panel on the left shows a probability mass function for a variable with 6

values. Each bar represents the probability of that value, so that, for example,

the probability of the value 1 is 0.2. The probability of a range of values is the

sum of their probabilities, so that the probability that the value is between

2 and 4 inclusive is 0.4. The ratio between the probabilities determines how

much more likely one value is than another, so that the value 5 is 7 times

more likely than the value 6. And, the sum of all of the probabilities (i.e.,

the height of the bars stacked on each other) is always 1. The panel on the

right shows a probability density function for a variable that is between 0 and

1. The total area under the curve is always 1, which means the densities of

individual points can (and often do) exceed 1. They cannot be interpreted as

probabilities. But the probability of a range of values can be determined by

the relevant area under the curve. In the right panel, the probability that the

value is between 0.1 and 0.4 is 0.4. And ratios can still be interpreted in a

relative way, so it is 5 times more likely the value is 0.7 than 0.55.

unnecessary—all inference could be done with the variables that define them—but

they are often conceptually very useful to include, to communicate the meaning of

a model.

The script Rate 2.txt implements the graphical model in WinBUGS:
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θ1

k1

n1

θ2

k2

n2

δ

k1 ∼ Binomial(θ1, n1)

k2 ∼ Binomial(θ2, n2)

θ1 ∼ Beta(1, 1)

θ2 ∼ Beta(1, 1)

δ ← θ1 − θ2

tFig. 3.3 Graphical model for inferring the difference, δ = θ1 − θ2 , in the rates of two binary

processes.

# Difference Between Two Rates
model{

# Observed Counts
k1 ~ dbin(theta1,n1)
k2 ~ dbin(theta2,n2)
# Prior on Rates
theta1 ~ dbeta(1,1)
theta2 ~ dbeta(1,1)
# Difference Between Rates
delta <- theta1-theta2

}

The code Rate 2.m or Rate 2.R sets k1 = 5, k2 = 7, n1 = n2 = 10, and then

calls WinBUGS to sample from the graphical model. WinBUGS returns to Matlab

or R the posterior samples from θ1, θ2, and δ. If the main research question is

how different the rates are, then δ is the most relevant variable, and its posterior

distribution is shown in Figure 3.4.

There are many ways the full information in the posterior distribution of δ might

usefully be summarized. The Matlab or R code produces a set of these from the

posterior samples, including:

• The mean value, which approximates the expectation of the posterior. This sum-

mary tries to pick a single value close to the truth, with bigger deviations from

the truth being punished more heavily. Statistically, it corresponds to the point

estimate under quadratic loss.

• The value with maximum density in the posterior samples, approximating the

posterior mode. This summary aims to pick the single most likely value. This

is known as the maximum a posteriori (MAP) estimate, and is the same as

the maximum likelihood estimate (MLE) for “flat” priors. Statistically, it corre-

sponds to the point estimate under zero–one loss. Estimating the mode requires
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tFig. 3.4 Posterior distribution of the difference between two rates δ = θ1 − θ2.

evaluating the likelihood function at each posterior sample, and so requires a

bit more post-processing work in Matlab or R.

• The median value, which is the value that separates the highest 50% of the

posterior distribution from the lowest 50%, and so finds the middle-most value.

Statistically, it corresponds to the point estimate under linear loss.

• The 95% credible interval. This gives the upper and lower values between which

95% of samples fall. Thus, it approximates the bounds on the posterior distri-

bution that contain 95% of the posterior density. The Matlab or R code can

be modified to produce credible intervals for criteria other than 95%.

For the current problem, the mean of δ estimated from the returned samples is ap-

proximately −0.17, the mode is approximately −0.17, the median is approximately

−0.17, and the 95% credible interval is approximately [−0.52, 0.21].

Exercises

Exercise 3.2.1 Compare the data sets k1 = 8, n1 = 10, k2 = 7, n2 = 10 and

k1 = 80, n1 = 100, k2 = 70, n2 = 100. Before you run the code, try to predict

the effect that adding more trials has on the posterior distribution for δ.

Exercise 3.2.2 Try the data k1 = 0, n1 = 1 and k2 = 0, n2 = 5. Can you explain

the shape of the posterior for δ?

Exercise 3.2.3 In what context might different possible summaries of the posterior

distribution of δ (i.e., point estimates, or credible intervals) be reasonable, and

when might it be important to show the full posterior distribution?
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3.3 Inferring a common rate

We continue to consider two binary processes, producing k1 and k2 successes out of

n1 and n2 trials, respectively, but now assume the underlying rate for both is the

same. This means there is just one rate, θ.

The graphical model representation for this problem is shown in Figure 3.5.

θ

k1

n1

k2

n2

k1 ∼ Binomial(θ, n1)

k2 ∼ Binomial(θ, n2)

θ ∼ Beta(1, 1)

tFig. 3.5 Graphical model for inferring the common rate θ of two binary processes.

An equivalent graphical model, using plate notation, is shown in Figure 3.6.

Plates are bounding rectangles that enclose independent replications of a graphical

structure within a whole model. In this case, the plate encloses the two observed

counts and numbers of trials. Because there is only one latent rate θ (i.e., the

same probability drives both binary processes) it is not iterated inside the plate.

One way to think of plates, which some people find helpful, is as “for loops” from

programming languages (including WinBUGS itself).

θ

ki

ni

ki ∼ Binomial(θ, ni)

θ ∼ Beta(1, 1)

i

tFig. 3.6 Graphical model for inferring the common rate θ underlying a number of binary

processes, using plate notation.

The script Rate 3.txt implements the graphical model in WinBUGS:

# Inferring a Common Rate
model{

# Observed Counts
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tFig. 3.7 Posterior distribution of the common rate θ of two binary processes.

k1 ~ dbin(theta,n1)
k2 ~ dbin(theta,n2)
# Prior on Single Rate Theta
theta ~ dbeta(1,1)

}

The code Rate 3.m or Rate 3.R sets k1, k2, n1, and n2, and then calls WinBUGS

to sample from the graphical model.1 The code also produces a plot of the posterior

distribution for the common rate, as shown in Figure 3.7.

Exercises

Exercise 3.3.1 Try the data k1 = 14, n1 = 20, k2 = 16, n2 = 20. How could you

report the inference about the common rate θ?

Exercise 3.3.2 Try the data k1 = 0, n1 = 10, k2 = 10, n2 = 10. What does this

analysis infer the common rate θ to be? Do you believe the inference?

Exercise 3.3.3 Compare the data sets k1 = 7, n1 = 10, k2 = 3, n2 = 10 and

k1 = 5, n1 = 10, k2 = 5, n2 = 10. Make sure, following on from the previous

question, that you understand why the comparison works the way it does.

1 Note that the R code specifies debug=T, and this means that WinBUGS needs to be closed (not

minimized) before the sampling information can be returned to R. WinBUGS is ready as soon
as the message “updates took x s” appears in the status bar.
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θ

k

n

θ ∼ Beta(1, 1)

k ∼ Binomial(θ, n)

tFig. 3.8 Graphical model for inferring the rate θ of a binary process.

3.4 Prior and posterior prediction

One conceptual way to think about Bayesian analysis is that Bayes’ rule provides

a bridge between the unobserved parameters of models and the observed data. The

most useful part of this bridge is that data allow us to update the uncertainty, rep-

resented by probability distributions, about parameters. But the bridge can handle

two-way traffic, and so there is a richer set of possibilities for relating parameters

to data. There are really four distributions available, and they are all important

and useful.

• First, the prior distribution over parameters captures our initial assumptions or

state of knowledge about the psychological variables they represent.

• Secondly, the prior predictive distribution tells us what data to expect, given our

model and our current state of knowledge. The prior predictive is a distribution

over data, and gives the relative probability of different observable outcomes

before any data have been seen.

• Thirdly, the posterior distribution over parameters captures what we know about

the psychological variables having updated the prior information with the ev-

idence provided by data.

• Finally, the posterior predictive distribution tells us what data to expect, given

the same model we started with, but with a current state of knowledge that

has been updated by the observed data. Again, the posterior predictive is a

distribution over data, and gives the relative probability of different observable

outcomes after data have been seen.

As an example to illustrate these distributions, we return to the simple problem

of inferring a single underlying rate. Figure 3.8 presents the graphical model, and

is the same as Figure 3.1.

The script Rate 4.txt implements the graphical model in WinBUGS, and pro-

vides sampling not just for the posterior, but also for the prior, prior predictive,

and posterior predictive:
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# Prior and Posterior Prediction
model{

# Observed Data
k ~ dbin(theta,n)
# Prior on Rate Theta
theta ~ dbeta(1,1)
# Posterior Predictive
postpredk ~ dbin(theta,n)
# Prior Predictive
thetaprior ~ dbeta(1,1)
priorpredk ~ dbin(thetaprior,n)

}

Posterior predictive sampling is achieved by the variable postpredk that sam-

ples predicted data using the same binomial as the actual observed data. To allow

sampling from the prior, we use a dummy variable thetaprior that is identical to

the one we actually do inference on, but is itself independent of the data, and so is

never updated. Prior predictive sampling is achieved by the variable priorpredk

that samples data using the same binomial, but relying on the prior rate.

The code Rate 4.m or Rate 4.R sets observed data with k = 1 successes out of

n = 15 observations, and then calls WinBUGS to sample from the graphical model.

The code also draws the four distributions, two in the parameter space (the prior

and posterior for θ), and two in the data space (the prior predictive and posterior

predictive for k). It should look something like Figure 3.9.
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tFig. 3.9 Prior and posterior for the success rate θ (top panel), and prior and posterior

predictive for counts of the number of successes (bottom panel), based on data giving

k = 1 successes out of n = 15 trials.
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Exercises

Exercise 3.4.1 Make sure you understand the prior, posterior, prior predictive,

and posterior predictive distributions, and how they relate to each other (e.g.,

why is the top panel of Figure 3.9 a line plot, while the bottom panel is a

bar graph?). Understanding these ideas is a key to understanding Bayesian

analysis. Check your understanding by trying other data sets, varying both k

and n.

Exercise 3.4.2 Try different priors on θ, by changing θ ∼ Beta
(
1, 1

)
to θ ∼

Beta
(
10, 10

)
, θ ∼ Beta

(
1, 5

)
, and θ ∼ Beta

(
0.1, 0.1

)
. Use the figures produced

to understand the assumptions these priors capture, and how they interact

with the same data to produce posterior inferences and predictions.

Exercise 3.4.3 Predictive distributions are not restricted to exactly the same ex-

periment as the observed data, and can be used in the context of any exper-

iment where the inferred model parameters make predictions. In the current

simple binomial setting, for example, predictive distributions could be found

by an experiment that is different because it has n′ 6= n observations. Change

the graphical model, and Matlab or R code, to implement this more general

case.

Exercise 3.4.4 In October 2009, the Dutch newspaper Trouw reported on research

conducted by H. Trompetter, a student from the Radboud University in the

city of Nijmegen. For her undergraduate thesis, Trompetter had interviewed

121 older adults living in nursing homes. Out of these 121 older adults, 24

(about 20%) indicated that they had at some point been bullied by their fellow

residents. Trompetter rejected the suggestion that her study may have been

too small to draw reliable conclusions: “If I had talked to more people, the

result would have changed by one or two percent at the most.” Is Trompetter

correct? Use the code Rate 4.m or Rate 4.R, by changing the dataset variable

(Matlab) or changing the values for k and n (R), to find the prior and posterior

predictive for the relevant rate parameter and bullying counts. Based on these

distributions, do you agree with Trompetter’s claims?

3.5 Posterior prediction

One important use of posterior predictive distributions is to examine the descriptive

adequacy of a model. It can be viewed as a set of predictions about what data

the model expects to see, based on the posterior distribution over parameters. If

these predictions do not match the data already seen, the model is descriptively

inadequate.

As an example to illustrate this idea of checking model adequacy, we return to the

problem of inferring a common rate underlying two binary processes. Figure 3.10

presents the graphical model, and is the same as Figure 3.5.
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θ

k1

n1

k2

n2

k1 ∼ Binomial(θ, n1)

k2 ∼ Binomial(θ, n2)

θ ∼ Beta(1, 1)

tFig. 3.10 Graphical model for inferring the common rate θ underlying two binary processes.

The script Rate 5.txt implements the graphical model in WinBUGS, and pro-

vides sampling for the posterior predictive distribution:

# Inferring a Common Rate, With Posterior Predictive
model{

# Observed Counts
k1 ~ dbin(theta,n1)
k2 ~ dbin(theta,n2)
# Prior on Single Rate Theta
theta ~ dbeta(1,1)
# Posterior Predictive
postpredk1 ~ dbin(theta,n1)
postpredk2 ~ dbin(theta,n2)

}

The code Rate 5.m or Rate 5.R sets observed data with k1 = 0 successes out

of n1 = 10 observations, and k2 = 10 successes out of n2 = 10 observations, as

considered in Exercise 3.3.2. The code draws the posterior distribution for the rate

and the posterior predictive distribution, as shown in Figure 3.11.

The left panel shows the posterior distribution over the common rate θ for two

binary processes, which gives density to values near 0.5. The right panel shows

the posterior predictive distribution of the model, with respect to the two success

counts. The size of each square is proportional to the predictive mass given to each

Box 3.3 The fundamental problem of inference

“The fundamental problem of inference and induction is to use past data to

predict future data. Extensive observations on the motions of heavenly bodies

enables their future positions to be calculated. Clinical studies on a drug allow

a doctor to give a prognosis for a patient for whom the drug is prescribed.

Sometimes the uncertain data are in the past, not the future. A historian will

use what evidence he has to assess what might have happened where records

are missing. A court of criminal law enquires about what had happened on

the basis of later evidence.” (Lindley, 2000, p. 304).
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tFig. 3.11 The posterior distribution of the common rate θ for two binary processes (left panel),

and the posterior predictive distribution (right panel), based on 0 and 10 successes

out of 10 observations.

possible combination of success count observations. The actual data observed in

this example, with 0 and 10 successes for the two counts, are shown by the cross.

Exercises

Exercise 3.5.1 Why is the posterior distribution in the left panel inherently one-

dimensional, but the posterior predictive distribution in the right panel inher-

ently two-dimensional?

Exercise 3.5.2 What do you conclude about the descriptive adequacy of the

model, based on the relationship between the observed data and the posterior

predictive distribution?

Exercise 3.5.3 What can you conclude about the parameter θ?

3.6 Joint distributions

So far, we have assumed that the number of successes k and number of total obser-

vations n is known, but that the underlying rate θ is unknown. This means that our

parameter space has been one-dimensional. Everything learned from data is incor-

porated into a single probability distribution representing the relative probabilities

of different values for the rate θ.

For many problems in cognitive science (and more generally), however, there will

be more than one unknown variable of interest, and they will interact. A simple

case of this general property is a binomial process in which both the rate θ and the

total number n are unknown, and so the problem is to infer both simultaneously

from counts of successes k.
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Box 3.4 Today’s posterior is tomorrow’s prior

The idea that prior information about parameters can be transformed

into posterior information, and hence prior predictive information about

data can be transformed into posterior predictive information, can be

continued indefinitely. As more information becomes available, usually

as more data are collected, uncertainty about parameters and pre-

dictive distributions are naturally updated in the Bayesian approach.
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The figure shows the incorporation of a sequence of data for the common

model in Figure 3.10. Panel “a” shows the uniform prior over the common

rate. Panel “b” shows the prior predictive, for the two counts of successes

out of 10 trials. The gray cross corresponds to the observed data, which has

yet to be incorporated, but can be compared to the prior predictive distri-

bution. Panel “c” shows the posterior on the rate that now incorporates the

data, and panel “d” shows the resulting posterior predictive. The first data

are now shown by the black cross in this posterior predictive, since they are

incorporated, but a new second data set, in the form of the different gray

cross, is about to arrive. These new data are incorporated into the posterior

distribution over the rate in panel “e,” which leads to the posterior prediction

in panel “f.” And so the process can continue. Notice how the distribution

over the rate parameter in panel “c” is the posterior distribution with respect

to the first data set, but acts as the prior for the second data set. This leads

to Lindley’s Bayesian motto “Today’s posterior is tomorrow’s prior.”
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θ

ki

n

i helpers

ki ∼ Binomial(θ, n)

θ ∼ Beta(1, 1)

n ∼ Categorical(
1

nmax
, . . . ,

1

nmax
︸ ︷︷ ︸

m

)

tFig. 3.12 Graphical model for the joint inference of n and θ from a set of m observed counts of

successes k1, . . . , km.

To make the problem concrete, suppose there are five helpers distributing a bun-

dle of surveys to houses. It is known that each bundle contained the same number

of surveys, n, but the number itself is not known. The only available relevant in-

formation is that the maximum bundle is nmax = 500, and so n must be between 1

and nmax.

In this problem, it is also not known what the rate of return for the surveys

is. But, it is assumed that each helper distributed to houses selected in a random

enough way that it is reasonable to believe the return rates are the same. It is also

assumed to be reasonable to set a uniform prior on this common rate θ ∼ Beta
(
1, 1

)
.

Inferences can simultaneously be made about n and θ from the observed number

of surveys returned for each of the helpers. Assuming the surveys themselves can

be identified with their distributing helper when returned, the data will take the

form of m = 5 counts, one for each helper, giving the number of returned surveys

for each.

The graphical model for this problem is shown in Figure 3.12, and the script

Survey.txt implements the graphical model in WinBUGS. Note the use of the

categorical distribution, which gives probabilities to a finite set of nominal out-

comes:

# Inferring Return Rate and Number of Surveys from Observed Returns
model{
# Observed Returns
for (i in 1:m){

k[i] ~ dbin(theta,n)
}
# Priors on Rate Theta and Number n
theta ~ dbeta(1,1)
n ~ dcat(p[])
for (i in 1:nmax){

p[i] <- 1/nmax
}

}

The code Survey.m or Survey.R uses the data k = {16, 18, 22, 25, 27}, and then

calls WinBUGS to sample from the graphical model. Figure 3.13 shows the joint

posterior distribution over n and θ as a scatter-plot, and the marginal distributions

of each as histograms.
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tFig. 3.13 Joint posterior distribution of the probability of return θ and the number of surveys n

for m = 5 observed counts k = {16, 18, 22, 25, 27}. The histograms show the

marginal densities. The cross shows the expected value of the joint posterior, and the

circle shows the mode (i.e., maximum likelihood), both estimated from the posterior

samples.

It is clear that the joint posterior distribution carries more information than the

marginal posterior distributions. This is very important. It means that just looking

at the marginal distributions will not give a complete account of the inferences

made, and may provide a misleading account.

An intuitive graphical way to see that there is extra information in the joint poste-

rior is to see if it is well approximated by the product of the marginal distributions.

Imagine sampling a point from the histogram for n where there is non-negligible

marginal density, such as at n = 300. Imagine also sampling points from the his-

togram for θ, where there is non-negligible marginal density, such as at θ = 0.4.

These choices correspond to a single point in the joint posterior density space. Now

imagine repeating this process many times. It should be clear that the resulting

scatter-plot would be different from the joint posterior scatter-plot in Figure 3.13.

So, the joint distribution carries information not available from the marginal dis-

tributions.

For this example, it is intuitively obvious why the joint posterior distribution has

the clear non-linear structure it does. One possible way in which 20 surveys might

be returned is if there were only about 50 surveys, but 40% were returned. Another
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possibility is that there were 500 surveys, but only a 4% return rate. In general,

the number and return rate can trade-off against each other, sweeping out the joint

posterior distribution seen in Figure 3.13.

Exercises

Exercise 3.6.1 The basic moral of this example is that it is often worth thinking

about joint posterior distributions over model parameters. In this case the

marginal posterior distributions are probably misleading. Potentially even

more misleading are common (and often perfectly appropriate) point esti-

mates of the joint distribution. The cross in Figure 3.13 shows the expected

value of the joint posterior, as estimated from the samples. Notice that it does

not even lie in a region of the parameter space with any posterior mass. Does

this make sense?

Exercise 3.6.2 The circle in Figure 3.13 shows an approximation to the mode (i.e.,

the sample with maximum likelihood) from the joint posterior samples. Does

this make sense?

Exercise 3.6.3 Try the very slightly changed data k = {16, 18, 22, 25, 28}. How

does this change the joint posterior, the marginal posteriors, the expectation,

and the mode? If you were comfortable with the mode, are you still comfort-

able?

Exercise 3.6.4 If you look at the sequence of samples in the trace plot, some

autocorrelation is evident. The samples “sweep” through high and low values

in a systematic way, showing the dependency of a sample on those immediately

preceding. This is a deviation from the ideal situation in which posterior

samples are independent draws from the joint posterior. Try thinning the

sampling, taking only every 100th sample, by setting nthin=100 in Matlab

or n.thin=100 in R. To make the computational time reasonable, reduce the

number of samples collected after thinning to just 500 (i.e., run 50,000 total

samples, so that 500 are retained after thinning). How is the sequence of

samples visually different with thinning?2

2 A note for R2jags users: at the time of writing, R2jags mistakenly randomizes the values in the

sims.array object whenever you run a single chain. Until this error is fixed it is safest to run
multiple chains, at least when you are interested in examining autocorrelation. See also the last

few posts here: http://sourceforge.net/p/mcmc-jags/discussion/610037/thread/cc61b820/
?limit=50#83b4.
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4.1 Inferring a mean and standard deviation

One of the most common inference problems involves assuming data following a

Gaussian (also known as a Normal, Central, or Maxwellian) distribution, and infer-

ring the mean and standard deviation of this distribution from a sample of observed

independent data.

The graphical model representation for this problem is shown in Figure 4.1.

The data are the n observations x1, . . . , xn. The mean of the Gaussian is µ and

the standard deviation is σ. WinBUGS parameterizes the Gaussian distribution

in terms of the mean and precision, not the mean and variance or the mean and

standard deviation. These are all simply related, with the variance being σ2 and

the precision being λ = 1/σ2.

Here the prior used for µ is intended to be only weakly informative. That is, it is

a prior intended to convey little information about the mean, so that inference will

be primarily dependent upon relevant data. It is a Gaussian centered on zero, but

with very low precision (i.e., very large variance), and gives prior probability to a

wide range of possible means for the data. When the goal is to estimate parameters,

this sort of approach is relatively non-controversial.

Setting priors for standard deviations (or variances, or precisions) is trickier, and

certainly more controversial. If there is any relevant information that helps put the

data on scale, so that bounds can be set on reasonable possibilities for the standard

deviation, then setting a uniform over that range is advocated by Gelman (2006).

In this first example, we assume the data are all small enough that setting an upper

bound of 10 on the standard deviation covers all the possibilities.

xi

µ σ µ ∼ Gaussian(0, 0.001)

σ ∼ Uniform(0, 10)

xi ∼ Gaussian(µ, 1
σ2 )

i data

tFig. 4.1 Graphical model for inferring the mean and standard deviation of data generated by a

Gaussian distribution.
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The script Gaussian.txt implements the graphical model in WinBUGS. Note

the conversion of the standard deviation sigma into the precision parameter lambda

used to sample from a Gaussian:

# Inferring the Mean and Standard Deviation of a Gaussian
model{
# Data Come From A Gaussian
for (i in 1:n){

x[i] ~ dnorm(mu,lambda)
}
# Priors
mu ~ dnorm(0,.001)
sigma ~ dunif(0,10)
lambda <- 1/pow(sigma,2)

}

The code Gaussian.m or Gaussian.R creates some artificial data, and applies the

graphical model to make inferences from data. The code does not produce a graph,

or any other output. But all of the information you need to analyze the results is

in the returned variables samples and stats.

Exercises

Exercise 4.1.1 Try a few data sets, varying what you expect the mean and stan-

dard deviation to be, and how many data you observe.

Exercise 4.1.2 Plot the joint posterior of µ and σ. That is, plot the samples from

µ against those of σ. Interpret the shape of the joint posterior.

Exercise 4.1.3 Suppose you knew the standard deviation of the Gaussian was 1.0,

but still wanted to infer the mean from data. This is a realistic question: For

example, knowing the standard deviation might amount to knowing the noise

associated with measuring some psychological trait using a test instrument.

The xi values could then be repeated measures for the same person, and their

mean the trait value you are trying to infer. Modify the WinBUGS script and

Matlab or R code to do this. What does the revised graphical model look like?

Exercise 4.1.4 Suppose you knew the mean of the Gaussian was zero, but wanted

to infer the standard deviation from data. This is also a realistic question:

Suppose you know that the error associated with a measurement is unbiased,

so its average or mean is zero, but you are unsure how much noise there is

in the instrument. Inferring the standard deviation is then a sensible way to

infer the noisiness of the instrument. Once again, modify the WinBUGS script

and Matlab or R code to do this. Once again, what does the revised graphical

model look like?
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4.2 The seven scientists

This problem is from MacKay (2003, p. 309) where it is, among other things,

treated to a Bayesian solution, but not quite using a graphical modeling approach,

nor relying on computational sampling methods.

Seven scientists with wildly-differing experimental skills all make a measurement

of the same quantity. They get the answers x = {−27.020, 3.570, 8.191, 9.898, 9.603,

9.945, 10.056}. Intuitively, it seems clear that the first two scientists are pretty inept

measurers, and that the true value of the quantity is probably just a bit below 10.

The main problem is to find the posterior distribution over the measured quantity,

telling us what we can infer from the measurement. A secondary problem is to infer

something about the measurement skills of the seven scientists.

The graphical model for one way of solving this problem is shown in Figure 4.2.

The assumption is that all the scientists have measurements that follow a Gaussian

distribution, but with different standard deviations. However, because they are all

measuring the same quantity, each Gaussian has the same mean, and it is just the

standard deviation that differs.

xiµ

λi

σi

i data

µ ∼ Gaussian(0, 0.001)

λi ∼ Gamma(0.001, 0.001)

σi ← 1/
√
λi

xi ∼ Gaussian(µ, λi)

tFig. 4.2 Graphical model for the seven scientists problem.

Notice that we have used a different approach to assign priors to the standard

deviations. The previous example, as shown in Figure 4.1, used a uniform distri-

bution. The current example, shown in Figure 4.2, uses a gamma distribution for

the priors on the precisions. This is another standard approach, which has some

attractive theoretical motivations, but is critically discussed by Gelman (2006).

The script SevenScientists.txt implements the graphical model in Figure 4.2

in WinBUGS:

# The Seven Scientists
model{
# Data Come From Gaussians With Common Mean But Different Precisions
for (i in 1:n){

x[i] ~ dnorm(mu,lambda[i])
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Box 4.1 Priors on precisions

The practice of assigning Gamma
(
0.001, 0.001

)
priors on precision parame-

ters is theoretically motivated by scale invariance arguments, meaning that

priors are chosen so that changing the measurement scale of the data does not

affect inference. The invariant prior on precision λ corresponds to a uniform

distribution on logσ, that is, p (σ2) ∝ 1/σ2, or a Gamma
(
a→ 0, b→ 0

)
dis-

tribution. This invariant prior distribution, however, is improper (i.e., the area

under the curve is unbounded), which means it is not really a distribution,

but the limit of a sequence of distributions (see Jaynes, 2003). WinBUGS

requires the use of proper distributions, and the Gamma
(
0.001, 0.001

)
prior

is intended as a proper approximation to the theoretically motivated improper

prior. This raises the issue of whether inference is sensitive to the essentially

arbitrary value 0.001, and it is sometimes the case that using other small

values such as 0.01 or 0.1 leads to more stable sampling in WinBUGS.

}
# Priors
mu ~ dnorm(0,.001)
for (i in 1:n){

lambda[i] ~ dgamma(.001,.001)
sigma[i] <- 1/sqrt(lambda[i])

}
}

Notice that the graphical model implements the prior on the precisions, but also

re-parameterizes to the standard deviation scale, which is often more easily inter-

pretable.

The code SevenScientists.m or SevenScientists.R applies the seven scientist

data to the graphical model.

Exercises

Exercise 4.2.1 Draw posterior samples using the Matlab or R code, and reach con-

clusions about the value of the measured quantity, and about the accuracies

of the seven scientists.

Exercise 4.2.2 Change the graphical model in Figure 4.2 to use a uniform prior

over the standard deviations, as was done in Figure 4.1. Experiment with the

effect the upper bound of this uniform prior has on inference.
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Box 4.2 Ill-posed problems

“If one fails to specify the prior information, a problem of inference is just as

ill-posed as if one had failed to specify the data.” (Jaynes, 2003, p. 373).

4.3 Repeated measurement of IQ

In this example, we consider how to estimate the IQ of a set of people, each of whom

have done multiple IQ tests. The data are the measures xij for the i = 1, . . . , n

people and their j = 1, . . . , m repeated test scores.

We assume that the differences in repeated test scores are distributed as Gaussian

error terms with zero mean and unknown precision. The mean of the Gaussian of

a person’s test scores corresponds to their latent true IQ. This will be different for

each person. The standard deviation of the Gaussians corresponds to the accuracy

of the testing instruments in measuring the one underlying IQ value. We assume

this is the same for every person, since it is conceived as a property of the tests

themselves.

The graphical model for this problem is shown in Figure 4.3. Because we know

quite a bit about the IQ scale, it makes sense to set priors for the mean and standard

deviation using this knowledge. Our first attempt to set priors (these are revisited in

the exercises) simply assume the actual IQ values are equally likely to be anywhere

between 0 and 300, and standard deviations are anywhere between 0 and 100.

xij

µi

σ

j tests

i people

µi ∼ Uniform(0, 300)

σ ∼ Uniform(0, 100)

xij ∼ Gaussian(µi,
1
σ2 )

tFig. 4.3 Graphical model for inferring the IQ from repeated measures.

The script IQ.txt implements the graphical model in WinBUGS:

# Repeated Measures of IQ
model{
# Data Come From Gaussians With Different Means But Common Precision
for (i in 1:n){

for (j in 1:m){
x[i,j] ~ dnorm(mu[i],lambda)

}
}
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# Priors
sigma ~ dunif(0,100)
lambda <- 1/pow(sigma,2)
for (i in 1:n){

mu[i] ~ dunif(0,300)
}

}

The code IQ.m or IQ.R creates a data set corresponding to there being three

people, with test scores of (90, 95, 100), (105, 110, 115), and (150, 155, 160), and

applies the graphical model.

Exercises

Exercise 4.3.1 Use the posterior distribution for each person’s µi to estimate their

IQ. What can we say about the precision of the IQ test?

Exercise 4.3.2 Now, use a more realistic prior assumption for the µi means. Theo-

retically, IQ distributions should have a mean of 100, and a standard deviation

of 15. This corresponds to having a prior of mu[i] ∼ dnorm(100,.0044), in-

stead of mu[i] ∼ dunif(0,300), because 1/152 = 0.0044. Make this change

in the WinBUGS script, and re-run the inference. How do the estimates of IQ

given by the means change? Why?

Exercise 4.3.3 Repeat both of the above stages (i.e., using both priors on µi)

with a new, but closely related, data set that has scores of (94, 95, 96), (109,

110, 111), and (154, 155, 156). How do the different prior assumptions affect

IQ estimation for these data. Why does it not follow the same pattern as the

previous data?
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5.1 Pearson correlation

The Pearson product-moment correlation coefficient, usually denoted r, is a widely

used measure of the relationship between two variables. It ranges from −1, indi-

cating a perfect negative linear relationship, to +1, indicating a perfect positive

relationship. A value of 0 indicates that there is no linear relationship. Usually

the correlation r is reported as a single point estimate, perhaps together with a

frequentist significance test.1

But, rather than just having a single number to measure the correlation, it would

be nice to have a posterior distribution for r, saying how likely each possible level

of correlation was. There are frequentist confidence interval methods that try to

do this, as well as various analytic Bayesian results based on asymptotic approx-

imations (e.g., Donner & Wells, 1986). An advantage of using a computational

approach is the flexibility in the assumptions that can be made. It is possible to

set up a graphical model that allows inferences about the correlation coefficient for

any set of prior assumptions about the correlation.

xi

µ σr

i data

µ1, µ2 ∼ Gaussian(0, 0.001)

σ1, σ2 ∼ InvSqrtGamma(0.001, 0.001)

r ∼ Uniform(−1, 1)

xi ∼ MvGaussian

(

(µ1, µ2) ,




σ2

1 rσ1σ2

rσ1σ2 σ2
2





−1
)

tFig. 5.1 Graphical model for inferring a correlation coefficient.

One graphical model for doing this is shown in Figure 5.1. The observed data

take the form xi = (xi1, xi2) for the ith observation, and, following the theory be-

hind the correlation coefficient, are modeled as draws from a multivariate Gaussian

distribution. The parameters of this distribution are the means µ = (µ1, µ2) and

standard deviations σ = (σ1, σ2) of the two variables, and the correlation coefficient

r that links them.

1 Frequentist or orthodox statistics is familiar to all cognitive scientists. Key frequentist concepts

include the p-value, power, confidence intervals, and Type-I error rate. We believe that for
scientific inference, the frequentist approach is inefficient at best and misleading at worst.
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Box 5.1 Frequentist subjectivity

“Today one wonders how it is possible that orthodox logic continues to

be taught in some places year after year and praised as ‘objective’, while

Bayesians are charged with ‘subjectivity’. Orthodoxians, preoccupied with

fantasies about nonexistent data sets and, in principle, unobservable limit-

ing frequencies—while ignoring relevant prior information—are in no position

to charge anybody with ‘subjectivity’.” (Jaynes, 2003, p. 550).

In Figure 5.1, the standard deviations are assigned relatively uninformative

inverse-square-root-gamma distributions. This is equivalent to placing gamma dis-

tributions on precisions, as was done in the seven scientists example in Section 4.2.

The correlation coefficient itself is given a uniform prior over its possible range. All

of these choices would be easily modified, with one obvious possible change being

to give the prior for the correlation more density around 0.

The script Correlation 1.txt implements the graphical model in WinBUGS:

# Pearson Correlation
model{
# Data
for (i in 1:n){

x[i,1:2] ~ dmnorm(mu[],TI[,])
}
# Priors
mu[1] ~ dnorm(0,.001)
mu[2] ~ dnorm(0,.001)
lambda[1] ~ dgamma(.001,.001)
lambda[2] ~ dgamma(.001,.001)
r ~ dunif(-1,1)
# Reparameterization
sigma[1] <- 1/sqrt(lambda[1])
sigma[2] <- 1/sqrt(lambda[2])
T[1,1] <- 1/lambda[1]
T[1,2] <- r*sigma[1]*sigma[2]
T[2,1] <- r*sigma[1]*sigma[2]
T[2,2] <- 1/lambda[2]
TI[1:2,1:2] <- inverse(T[1:2,1:2])

}

The code Correlation 1.m or Correlation 1.R includes two data sets. Both

involve fabricated data comparing response times in a semantic verification task

(e.g., “Is a whale a fish?”) on the x-axis with IQ measures on the y-axis, looking for

a correlation between simple measures of decision-making and general intelligence.

For the first data set in the Matlab and R code, the results shown in Figure 5.2

are produced. The left panel shows a scatter-plot of the raw data. The right panel

shows the posterior distribution of r, together with the standard frequentist point

estimate.
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tFig. 5.2 Data (left panel) and posterior distribution for correlation coefficient (right panel).

The broken line shows the frequentist point estimate.

Exercises

Exercise 5.1.1 The second data set in the Matlab and R code is just the first data

set from Figure 5.2 repeated twice. Set dataset=2 to consider these repeated

data, and interpret the differences in the posterior distributions for r.

Exercise 5.1.2 Do you find the priors on µ1 and µ2 to be reasonable?

Exercise 5.1.3 The current graphical model assumes that the values from the

two variables—the xi = (xi1, xi2)—are observed with perfect accuracy. When

might this be a problematic assumption? How could the current approach be

extended to make more realistic assumptions?

5.2 Pearson correlation with uncertainty

We now tackle the problem asked by the last question in the previous section, and

consider the correlations when there is uncertainty about the exact values of vari-

ables. It is likely that each individual response time is measured very accurately,

since it is a physical quantity and good measurement tools exist. But the measure-

ment of IQ seems likely to be less precise, since it is a psychological quantity, and

measurement tools like IQ tests are less accurate. The uncertainty in measurement

should be incorporated in an assessment of the correlation between the variables

(e.g., Behseta, Berdyyeva, Olson, & Kass, 2009).

A simple approach for including this uncertainty is adopted by the graphical

model in Figure 5.3. The observed data still take the form xi = (xi1, xi2) for the

ith person’s response time and IQ measure. But these observations are now sampled

from a Gaussian distribution, centered on the unobserved true response time and

IQ of that person, denoted yi = (yi1, yi2). These true values are then modeled as the
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yi

xi

µ σr

λe

i data

µ1, µ2 ∼ Gaussian(0, 0.001)

σ1, σ2 ∼ InvSqrtGamma(0.001, 0.001)

r ∼ Uniform(−1, 1)

yi ∼ MvGaussian

(

(µ1, µ2) ,




σ2

1 rσ1σ2

rσ1σ2 σ2
2





−1
)

xij ∼ Gaussian(yij, λ
e
j)

tFig. 5.3 Graphical model for inferring a correlation coefficient, when there is uncertainty

inherent in the measurements.

x were in the previous model in Figure 5.1, as draws from a multivariate Gaussian

distribution.

The precision of the measurements is captured by λe = (λe
1, λ

e
2) of the Gaus-

sian draws for the observed data, xij ∼ Gaussian
(
yij , λ

e
j

)
. The graphical model in

Figure 5.3 assumes that these precisions are known.

The script Correlation 2.txt implements the graphical model shown in Win-

BUGS:

# Pearson Correlation With Uncertainty in Measurement
model{
# Data
for (i in 1:n){

y[i,1:2] ~ dmnorm(mu[],TI[,])
for (j in 1:2){
x[i,j] ~ dnorm(y[i,j],lambdaerror[j])

}
}
# Priors
mu[1] ~ dnorm(0,.001)
mu[2] ~ dnorm(0,.001)
lambda[1] ~ dgamma(.001,.001)
lambda[2] ~ dgamma(.001,.001)
r ~ dunif(-1,1)
# Reparameterization
sigma[1] <- 1/sqrt(lambda[1])
sigma[2] <- 1/sqrt(lambda[2])
T[1,1] <- 1/lambda[1]
T[1,2] <- r*sigma[1]*sigma[2]
T[2,1] <- r*sigma[1]*sigma[2]
T[2,2] <- 1/lambda[2]
TI[1:2,1:2] <- inverse(T[1:2,1:2])

}

The code Correlation 2.m or Correlation 2.R uses the same data as in the

previous section, but has different analyses because of the different assumptions

about the uncertainty in measurement. In these new analyses, we assume that



64 Some examples of data analysis

0 0.25 0.5 0.75 1 1.25 1.5
85

90

95

100

105

110

115

Response Time (sec)

IQ

−1 −0.5 0 0.5 1
Correlation

P
o

s
te

ri
o

r 
D

e
n

s
it
y

tFig. 5.4 Data (left panel), including error bars showing uncertainty in measurement, and

posterior distribution for the correlation coefficient (right panel). The broken line

shows the frequentist point estimate.

measurement uncertainty is originally expressed in terms of standard deviations,

and then re-parameterized and supplied to the graphical model as precisions. The

specific assumption is that σe
1 = .03 for response times (which seem likely to be

measured accurately) and σe
2 = 1 for IQ (which seems near the smallest plausible

value, so we assume that IQ is also measured accurately). The results of these

assumptions using the model are shown in Figure 5.4. The left panel shows a scatter-

plot of the raw data, together with error bars representing the uncertainty quantified

by the assumed standard deviations σe
1 and σe

2. The right panel shows the posterior

distribution of r, together with the standard frequentist point estimate.

Exercises

Exercise 5.2.1 Compare the results obtained in Figure 5.4 with those obtained

earlier using the same data, in Figure 5.2, for the model without any account

of uncertainty in measurement.

Exercise 5.2.2 Generate results for the second data set, which changes σe
2 = 10

for the IQ measurement. Compare these results with those obtained assuming

σe
2 = 1.

Exercise 5.2.3 The graphical model in Figure 5.3 assumes the uncertainty for each

variable is known. How could this assumption be relaxed to the case where

the uncertainty is unknown?

Exercise 5.2.4 The graphical model in Figure 5.3 assumes the uncertainty for each

variable is the same for all observations. How could this assumption be relaxed

to the case where, for example, extreme IQs are less accurately measured than

IQs in the middle of the standard distribution?
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5.3 The kappa coefficient of agreement

An important statistical inference problem in a range of physical, biological, behav-

ioral, and social sciences is to decide how well one decision-making method agrees

with another. An interesting special case considers only binary decisions, and views

one of the decision-making methods as giving objectively true decisions to which

the other aspires. This problem occurs often in medicine, when cheap or easily ad-

ministered methods for diagnosis are evaluated in terms of how well they agree with

a more expensive or complicated “gold standard” method.

For this problem, when both decision-making methods make n independent as-

sessments, the data y take the form of four counts: a observations where both

methods decide “one,” b observations where the objective method decides “one” but

the surrogate method decides “zero,” c observations where the objective method

decides “zero” but the surrogate method decides “one,” and d observations where

both methods decide “zero,” with n = a+ b+ c+ d.

A variety of orthodox statistical measures have been proposed for assessing agree-

ment using these data (but see Basu, Banerjee, & Sen, 2000; Broemeling, 2009, for

Bayesian approaches). Useful reviews are provided by Agresti (1992), Banerjee,

Capozzoli, McSweeney, and Sinha (1999), Fleiss, Levin, and Paik (2003), Kraemer

(1992), Kraemer, Periyakoil, and Noda (2004), and Shrout (1998). Of all the mea-

sures, however, it is reasonable to argue that the conclusion of Uebersax (1987) that

“the kappa coefficient is generally regarded as the statistic of choice for measuring

agreement” (p. 140) remains true.

Cohen’s (1960) kappa statistic estimates the level of observed agreement

po =
a+ d

n

relative to the agreement that would be expected by chance alone (i.e., the overall

probability for the first method to decide “one” times the overall probability for the

second method to decide “one,” and added to this the overall probability for the

second method to decide “zero” times the overall probability for the first method

to decide “zero”)

pe =
(a+ b) (a+ c) + (b + d) (c+ d)

n2
,

and is given by

κ =
po − pe

1− pe

.

Kappa lies on a scale of −1 to +1, with values below 0.4 often interpreted as

“poor” agreement beyond chance, values between 0.4 and 0.75 interpreted as “fair

to good” agreement beyond chance, and values above 0.75 interpreted as “excellent”

agreement beyond chance (Landis & Koch, 1977). The key insight of kappa as a

measure of agreement is its correction for chance agreement.
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y

πa πb πc πd

αβ γ

κξ ψ
κ ← (ξ − ψ)/ (1− ψ)

ξ ← αβ + (1− α) γ

ψ ← (πa + πb) (πa + πc)

+ (πb + πd) (πc + πd)

α, β, γ ∼ Beta(1, 1)

πa ← αβ

πb ← α (1− β)

πc ← (1− α) (1− γ)

πd ← (1− α) γ

y ∼ Multinomial([πa, πb, πc, πd] , n)

tFig. 5.5 Graphical model for inferring the kappa coefficient of agreement.

The graphical model for a Bayesian version of kappa is shown in Figure 5.5.

The key latent variables are α, β, and γ. The rate α is the rate at which the gold

standard method decides “one.” This means (1− α) is the rate at which the gold

standard method decides “zero.” The rate β is the rate at which the surrogate

method decides “one” when the gold standard also decides “one.” The rate γ is the

rate at which the surrogate method decides “zero” when the gold standard decides

“zero.” The best way to interpret β and γ is that they are the rate of agreement of

the surrogate method with the gold standard, for the “one” and “zero” decisions

respectively.

Using the rates α, β, and γ, it is possible to calculate the probabilities that both

methods will decide “one,” πa = αβ, that the gold standard will decide “one”

but the surrogate will decide “zero,” πb = α (1− β), the gold standard will decide

“zero” but the surrogate will decide “one,” πc = (1− α) (1− γ), and that both

methods will decide “zero,” πd = (1− α)γ.

These probabilities, in turn, describe how the observed data, y, made up of the

counts a, b, c, and d, are generated. They come from a multinomial distribution

with n trials, where on each trial there is a πa probability of generating an a count,

πb probability for a b count, and so on.

So, observing the data y allows inferences to be made about the key rates α, β,

and γ. The remaining variables in the graphical model in Figure 5.5 just re-express

these rates in the way needed to provide an analogue to the kappa measure of

chance-corrected agreement. The ξ variable measures the rate of agreement, which
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is ξ = αβ + (1− α) γ. The ψ variable measures the rate of agreement that would

occur by chance, which is ψ = (πa + πb) (πa + πc) + (πb + πd) (πc + πd), and could

be expressed in terms of α, β, and γ. Finally κ is the chance-corrected measure of

agreement on the −1 to +1 scale, given by κ = (ξ − ψ) / (1− ψ).

The script Kappa.txt implements the graphical model in WinBUGS:

# Kappa Coefficient of Agreement
model{
# Underlying Rates
# Rate Objective Method Decides "one"
alpha ~ dbeta(1,1)
# Rate Surrogate Method Decides "one" When Objective Method Decides "one"
beta ~ dbeta(1,1)
# Rate Surrogate Method Decides "zero" When Objective Method Decides "zero"
gamma ~ dbeta(1,1)
# Probabilities For Each Count
pi[1] <- alpha*beta
pi[2] <- alpha*(1-beta)
pi[3] <- (1-alpha)*(1-gamma)
pi[4] <- (1-alpha)*gamma
# Count Data
y[1:4] ~ dmulti(pi[],n)
# Derived Measures
# Rate Surrogate Method Agrees With the Objective Method
xi <- alpha*beta+(1-alpha)*gamma
# Rate of Chance Agreement
psi <- (pi[1]+pi[2])*(pi[1]+pi[3])+(pi[2]+pi[4])*(pi[3]+pi[4])
# Chance-Corrected Agreement
kappa <- (xi-psi)/(1-psi)

}

The code Kappa.m or Kappa.R includes several data sets, described in the exercises

below, for WinBUGS to sample from the graphical model.

Exercises

Exercise 5.3.1 Influenza Clinical Trial. Poehling, Griffin, and Dittus (2002) re-

ported data evaluating a rapid bedside test for influenza using a sample of

233 children hospitalized with fever or respiratory symptoms. Of the 18 chil-

dren known to have influenza, the surrogate method identified 14 and missed

4. Of the 215 children known not to have influenza, the surrogate method cor-

rectly rejected 210 but falsely identified 5. These data correspond to a = 14,

b = 4, c = 5, and d = 210. Examine the posterior distributions of the inter-

esting variables, and reach a scientific conclusion. That is, pretend you are a

consultant for the clinical trial. What would your two- or three-sentence “take

home message” conclusion be to your customers?

Exercise 5.3.2 Hearing Loss Assessment Trial. Grant (1974) reported data from

a screening of a pre-school population intended to assess the adequacy of a

school nurse assessment in relation to expert assessment of hearing loss. Of

those children assessed by the expert as having hearing loss, 20 were correctly

identified by the nurse and 7 were missed. Of those assessed by the expert
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as not having hearing loss, 417 were correctly diagnosed by the nurse but

103 were incorrectly diagnosed as having hearing loss. These data correspond

to a = 20, b = 7, c = 103, d = 417. Once again, examine the posterior

distributions of the interesting variables, and reach a scientific conclusion.

Once again, what would your two- or three-sentence “take home message”

conclusion be to your customers?

Exercise 5.3.3 Rare Disease. Suppose you are testing a cheap instrument for de-

tecting a rare medical condition. After 170 patients have been screened, the

test results show that 157 did not have the condition, but 13 did. The expen-

sive ground-truth assessment subsequently revealed that, in fact, none of the

patients had the condition. These data correspond to a = 0, b = 0, c = 13,

d = 157. Apply the kappa graphical model to these data, and reach a conclu-

sion about the usefulness of the cheap instrument. What is special about this

data set, and what does it demonstrate about the Bayesian approach?

5.4 Change detection in time series data

This case study involves near-infrared spectrographic data, in the form of oxy-

genated hemoglobin counts of frontal lobe activity during an attention task in At-

tention Deficit Hyperactivity Disorder (ADHD) adults. The interesting modeling

problem is that a change is expected in the time series of counts because of the

attention task. The statistical problem is to identify the change. To do this, we are

going to make a number of strong assumptions. In particular, we will assume that

the counts come from a Gaussian distribution that always has the same variance,

but changes its mean at one specific point in time. The main interest is therefore

in making an inference about this change point.

µ1 µ2λ

ci tiτ

i samples

µ1, µ2 ∼ Gaussian(0, 0.001)

λ ∼ Gamma(0.001, 0.001)

τ ∼ Uniform(0, tmax)

ci ∼







Gaussian(µ1, λ) if ti < τ

Gaussian(µ2, λ) if ti ≥ τ

tFig. 5.6 Graphical model for detecting a single change point in time series.

Figure 5.6 presents a graphical model for detecting the change point. The ob-

served data are the counts ci at time ti for the ith sample. The unobserved variable

τ is the time at which the change happens, which controls whether the counts have

mean µ1 or µ2. A uniform prior over the full range of possible times is assumed for



69 Change detection in time series data

the change point, and generic weakly informative priors are given to the means and

the precision.

The script ChangeDetection.txt implements this graphical model in WinBUGS:

# Change Detection
model{
# Data Come From A Gaussian
for (i in 1:n){

c[i] ~ dnorm(mu[z1[i]],lambda)
}
# Group Means
mu[1] ~ dnorm(0,.001)
mu[2] ~ dnorm(0,.001)
# Common Precision
lambda ~ dgamma(.001,.001)
sigma <- 1/sqrt(lambda)
# Which Side is Time of Change Point?
for (i in 1:n){

z[i] <- step(t[i]-tau)
z1[i] <- z[i]+1

}
# Prior On Change Point
tau ~ dunif(0,n)

}

Note the use of the step function. This function returns 1 if its argument is greater

than or equal to zero, and 0 otherwise. The z1 variable, however, serves as an

indicator variable for mu, and therefore it needs to take on values 1 and 2. This is

the reason z is transformed to z1. Study this code and make sure you understand

what the step function accomplishes in this example.

The code ChangeDetection.m or ChangeDetection.R applies the model to the

near-infrared spectrographic data. Uniform sampling is assumed, so that t =

1, . . . , 1178.

The code produces a simple analysis, finding the mean of the posteriors for τ ,

µ1 and µ2, and using these summary points to overlay the inferences over the raw

data. The result looks something like Figure 5.7. The time series data themselves

are shown by the jagged black lines. The expected value of the posterior mean for

the pre- and post-change levels, given by the posterior means for µ1 and µ2, are

shown by the horizontal lines. The expected change point, given by the posterior

mean for τ , is just under 800 samples, and is used to separate the plotting of the

pre-change level from the post-change level.

Exercises

Exercise 5.4.1 Draw the posterior distributions for the change point, the means,

and the common standard deviation.

Exercise 5.4.2 Figure 5.7 shows the mean of the posterior distribution for the

change point (this is the point in time where the two horizontal lines meet).

Can you think of a situation in which such a plotting procedure can be mis-

leading?
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jagged lines (note that these are observed data to be modeled; they are not chains

from MCMC sampling), and the pre- and post-change levels around the expected

change point are shown by the two overlaid horizontal lines.

Exercise 5.4.3 Imagine that you apply this model to a data set that has two

change points instead of one. What could happen?

5.5 Censored data

Starting April 13 2005, Cha Sa-soon, a 68-year-old grandmother living in Jeonju,

South Korea, repeatedly tried to pass the written exam for a driving license. In

South Korea, this exam features 50 four-choice questions. In order to pass, one

requires a score of at least 60 points out of a maximum of 100. Accordingly, we

assume that each correct answer is worth two points, so that in order to pass, one

needs to answer at least 30 questions correctly.

What has made Cha Sa-soon something of a national celebrity is that she failed

to pass the test on 949 consecutive occasions, spending the equivalent of 4200 US

dollars on application fees. In her last, 950th attempt, Cha Sa-soon scored the

required minimum of 30 correct questions and finally passed her written exam.

After her 775th failure, in February 2009, Mrs Cha told Reuters news agency, “I

believe you can achieve your goal if you persistently pursue it. So don’t give up

your dream, like me. Be strong and do your best.”

We know that on her final and 950th attempt, Cha Sa-soon answered 30 questions

correctly. In addition, news agencies report that in her 949 unsuccessful attempts,

the number of correct answers had ranged from 15 to 25. Armed with this knowl-

edge, what can we say about θ, the latent probability that Cha Sa-soon can answer
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yi

n

zi

θ

i attempts

θ ∼ Uniform(0.25, 1)

zi ∼ Binomial(θ, n)

15 ≤ zi ≤ 25 if yi = 1

tFig. 5.8 Graphical model for inferring a rate from observed and censored data.

any one question correctly? Note that we assume each question is equally difficult,

and that Cha Sa-soon does not learn from her earlier attempts.

The Cha Sa-soon data are special because we do not know the precise scores

for the failed attempts. We only know that these scores range from 15 to 25. In

statistical terms, these data are said to be censored, both from below and from

above. We follow an approach inspired by Gelman and Hill (2007, p. 405) to apply

WinBUGS to the problem of dealing with censored data.

Figure 5.8 presents a graphical model for dealing with the censored data. The

variable zi represents both the first 949 unobserved, and the final observed attempt.

This means zi is observed once, but not observed the other times. This sort of

variable is known as partially observed , and is denoted in the graphical model by a

lighter shading, between the dark shading of fully observed nodes, and the lack of

shading for fully unobserved or latent nodes.

The variable yi is a simple binary indicator variable, denoting whether or not the

ith attempt is observed. The bounds zlo = 15 and zhi = 25 give the known censored

interval for the unobserved attempts. Finally, n = 50 is the number of questions in

the test. This means that zi ∼ Binomial
(
θ, n

)

I(zlo,zhi)
when yi indicates a censored

attempt, but that zi is not censored for the final known score z950 = 30. The

probability of a correct answer to a question, θ, is given a uniform prior between

0.25 and 1, corresponding to the assumption that chance accuracy of 1 in 4 is the

lowest possible probability.

The script ChaSaSoon.txt implements this graphical model in WinBUGS:

# ChaSaSoon Censored Data
model{
for (i in 1:nattempts){

# If the Data Were Unobserved y[i]=1, Otherwise y[i]=0
z.low[i] <- 15*equals(y[i],1)+0*equals(y[i],0)
z.high[i] <- 25*equals(y[i],1)+n*equals(y[i],0)
z[i] ~ dbin(theta,n)I(z.low[i],z.high[i])

}
# Uniform Prior on Rate Theta
theta ~ dbeta(1,1)I(.25,1)

}
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tFig. 5.9 Posterior density for Cha Sa-soon’s rate of answering questions correctly.

Note the use of the equals command, which returns 1 when its arguments match,

and 0 when they mismatch. Thus, when y[i]=1, for censored data, z.low[i] is set

to 15 and z.hi[i] is set to 25. When y[i]=0, z.low[i] is set to 0 and z.hi[i] is

set to n. These z.low[i] and z.hi[i] values are then applied to censor the bino-

mial distribution that generates the test scores, using the WinBUGS I (“interval”)

command. In this way, the use of equals implements what might be considered

the “case” or “if-then-else” logic of the model.

The code ChaSaSoon.m or ChaSaSoon.R applies the model to the data from Cha

Sa-soon.2 The posterior density for θ is shown in Figure 5.9, and can be seen to be

relatively peaked. Despite the fact that we do not know the actual scores for 949

of the 950 results, we are still able to infer a lot about θ.

Exercises

Exercise 5.5.1 Do you think Cha Sa-soon could have passed the test by just guess-

ing?

Exercise 5.5.2 What happens when you increase the interval in which you know

the data are located, from 15–25 to something else?

Exercise 5.5.3 What happens when you decrease the number of failed attempts?

Exercise 5.5.4 What happens when you increase Cha Sa-soon’s final score from

30?

2 On some computers, WinBUGS will persistently return the mysterious error message “value
of binomial z[950] must be greater than lower bound.” If you know how to fix this error, we

would love to hear from you. Otherwise, we can only suggest you run the code on a different
computer.
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Exercise 5.5.5 Do you think the assumption that all of the scores follow a binomial

distribution with a single rate of success is a good model for these data?

5.6 Recapturing planes

An interesting inference problem that occurs in a number of fields is to estimate

the size of a population, when a census is impossible, but repeated surveying is

possible. For example, the goal might be to estimate the number of animals in a

large woodland area that cannot be searched exhaustively. Or, the goal might be

to decide how many students are on a campus, but it is not possible to count them

all. Or, the goal might be to find out how many words in a given language a person

knows, but it is not feasible to ask the person to list them all.

A clever sampling approach to this problem is given by capture-and-recapture

methods. The basic idea is to capture (i.e., identify, tag, or otherwise remember) a

sample at one time point, and then collect another sample. The number of items in

the second sample that were also in the first then provides relevant information as

to the population size. High recapture counts suggest that the population is small,

and low recapture counts suggest that the population is large.

Probably the simplest possible version of this approach can be formalized with

t as the unknown population size, x as the size of the first sample (i.e., number of

units captured), and n as the size of the second sample from which a subset of k

units were also present in the first sample (i.e., number of units recaptured). That

is, first x animals are tagged or people remembered or words produced, then k out

of n are seen again when a second sample is taken.

The statistical model to relate the counts and make inferences about the popu-

lation size t is based on the hypergeometric distribution. The probability of seeing

k items recaptured in a sample of size n, from the x originally captured in a popu-

lation of size t, is

Pr (K = k) =

(
x

k

)(
t− x
n− k

)/(
t

n

)

.

Intuitively, the second sample involves taking n items from a population of t, and

has k out of x recaptures, and n − k other items out of the other t − x in the

population. Another way to formalize this is to say that the number of recaptures

k is a sample from a hypergeometric distribution

k ∼ Hypergeometric
(
n, x, t

)
.

To make these ideas concrete, consider the challenge of estimating how many

aircraft a small airline company has in its fleet. One day at an airport, you see 10

of the airline company’s planes parked at adjacent gates, and record their unique

identifying tail numbers. A few days later, at a different airport, you see 5 of the

same company’s planes. Looking at the tail number of those planes, you observe
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x
k ∼ Hypergeometric(n, x, t)

t ∼ Categorical(α)

tFig. 5.10 Graphical model for inferring a population from capture-and-recapture data.

that 4 of the 5 were part of your original list. This is a capture-and-recapture

problem with x = 10, k = 4, and n = 5.

The Bayesian approach to this problem involves assigning a prior to t, and us-

ing the hypergeometric distribution as the appropriate likelihood function. Con-

ceptually, this means k ∼ Hypergeometric
(
n, x, t

)
, as in the graphical model in

Figure 5.10. The vector α allows for any sort of prior mass to be given to all the

possible counts for the population total. Since x+(n− k) items are known to exist,

one reasonable choice of prior might be to make every possibility from x+(n− k) to

tmax equally likely, where tmax is a sensible upper bound on the possible population.

Suppose, for example, in the airplane problem that you know that the maximum

number the company could possibly have is 50 planes, so that tmax = 50.

While it is simple conceptually, there is a difficulty in implementing the graphical

model in Figure 5.10. The problem is that WinBUGS does not provide the hyper-

geometric distribution. It is, however, possible to implement distributions that are

not provided, but for which the likelihood function can be expressed in WinBUGS.

This can be done using either the so-called “ones trick” or the “zeros trick.”3 These

tricks rely on simple properties of the Poisson and Bernoulli distributions. By im-

plementing the likelihood function of the new distribution within the Poisson or

Bernoulli distribution, and forcing values of 1 or 0 to be sampled, it can be shown

that the samples actually generated will come from the desired distribution.

The script Planes.txt implements the graphical model in Figure 5.10 in Win-

BUGS, using the zeros trick. Note how the terms in the log-likelihood expression

for the hypergeometric distribution are built up to define phi, and a constant C is

used to ensure the Poisson distribution is used with a positive value:

# Planes
model{
# Hypergeometric Likelihood Via Zeros Trick
logterm1 <- logfact(x)-logfact(k)-logfact(x-k)
logterm2 <- logfact(t-x)-logfact(n-k)-logfact((t-x)-(n-k))
logterm3 <- logfact(t)-logfact(n)-logfact(t-n)
C <- 1000

3 Using the zeros trick or ones trick in JAGS involves putting the assignment of zeros or ones

inside the data definition block, rather than inside the model definition block.
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Box 5.2 The zeros trick, ones trick, and WBDev

The zeros trick and ones trick are extremely useful, and relatively easy

to implement in many cases, but a little difficult to understand conceptu-

ally. The key insight is that the negative log-likelihood of a sample of 0

from Poisson
(
φ
)

is φ, and similarly for a sample of 1 from Bernoulli
(
θ
)

it is θ. So, by setting log φ or θ appropriately, and forcing 1 or 0 to be

observed, sampling effectively proceeds from the distribution defined by φ or θ.

More complicated extensions to the distributions and functions avail-

able in WinBUGS require using the WinBUGS Development Interface

(WBDev: Lunn, 2003). This is an add-on program that allows the user to

hand-code functions and distributions in Component Pascal. Wetzels, Lee,

and Wagenmakers (2010) provide a tutorial on WBDev that includes simple

worked examples of defining new distributions and functions. More detailed

cognitive science applications are provided by Wetzels, Vandekerckhove, et

al. (2010) implementing the Expectancy-Valence model of decision-making

as a function in WBDev, and Vandekerckhove et al. (2011) implementing the

drift-diffusion model as a distribution in WBDev. Both of these applications

would be impractical without WBDev.

phi <- -(logterm1+logterm2-logterm3)+C
zeros <- 0
zeros ~ dpois(phi)
# Prior on Population Size
for (i in 1:tmax){

tptmp[i] <- step(i-(x+n-k))
tp[i] <- tptmp[i]/sum(tptmp[1:tmax])

}
t ~ dcat(tp[])

}

The code Planes.m or Planes.R applies the model to the data x = 10, k = 4, and

n = 5, using uniform prior mass for all possible sizes between x+(n− k) = 11 and

tmax = 50. The posterior distribution for t is shown in Figure 5.11. The inference

is that it is mostly likely there are not many more than 11 planes, which makes

intuitive sense, since 4 out of 5 in the second sample were from the original set of

10.

Exercises

Exercise 5.6.1 Try changing the number of planes seen again in the second sample

from k = 4 to k = 0. What inference do you draw about the population size

now?
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tFig. 5.11 Posterior mass for the number of planes, known to be 50 or fewer, based on a

capture-recapture experiment with x = 10 planes in the first sample, and k = 4 out of

n = 5 seen again in the second sample.

Exercise 5.6.2 How much impact does the upper bound tmax = 50 have on the

final conclusions when k = 4 and when k = 0? Develop your answer by trying

both the k = 4 and k = 0 cases with tmax = 100.

Exercise 5.6.3 Suppose, having obtained the posterior mass in Figure 5.11, the

same fleet of planes was subjected to a new sighting at a different airport at

a later day. What would be an appropriate prior for t?



6 Latent-mixture models

6.1 Exam scores

Suppose a group of 15 people sit an exam made up of 40 true-or-false questions,

and they get 21, 17, 21, 18, 22, 31, 31, 34, 34, 35, 35, 36, 39, 36, and 35 right. These

scores suggest that the first 5 people were just guessing, but the last 10 had some

level of knowledge.

One way to make statistical inferences along these lines is to assume there are two

different groups of people. These groups have different probabilities of success, with

the guessing group having a probability of 0.5, and the knowledge group having a

probability greater than 0.5. Whether each person belongs to the first or the second

group is a latent or unobserved variable that can take just two values. Using this

approach, the goal is to infer to which group each person belongs, and also the rate

of success for the knowledge group.

n

ki

θi

zi

ψφ

i people

zi ∼ Bernoulli(0.5)

φ ∼ Uniform(0.5, 1)

ψ ← 0.5

θi ←







φ if zi = 1

ψ if zi = 0

ki ∼ Binomial(θi, n)

tFig. 6.1 Graphical model for inferring membership of two latent groups, with different rates of

success in answering exam questions.

A graphical model for doing this is shown in Figure 6.1. The number of correct

answers for the ith person is ki, and is out of n = 40. The probability of success on

each question for the ith person is the rate θi. This rate is either ψ, if the person is

77
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in the guessing group, or φ if the person is in the knowledge group. Which group the

ith person belongs to is determined by a binary indicator variable zi, with zi = 0

if the ith person is in the guessing group, and zi = 1 if the ith person is in the

knowledge group.

We assume each of these indicator variables is equally likely to be 0 or 1 a priori,

so they have the prior zi ∼ Bernoulli
(
1/2

)
. For the guessing group, we assume

that the rate is ψ = 1/2. For the knowledge group, we use a prior where all rate

possibilities greater than 1/2 are equally likely, so that φ ∼ Uniform
(
0.5, 1

)
.

This type of model is known as a latent-mixture model, because the data are

assumed to be generated by two different processes that combine or mix, and im-

portant properties of that mixture are unobserved or latent. In this case, the two

components that mix are the guessing and knowledge processes, and the group

membership of each person is latent.

The script Exams 1.txt implements the graphical model in WinBUGS:

# Exam Scores
model{
# Each Person Belongs To One Of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(0.5)
}
# First Group Guesses
psi <- 0.5
# Second Group Has Some Unknown Greater Rate Of Success
phi ~ dbeta(1,1)I(0.5,1)
# Data Follow Binomial With Rate Given By Each Person’s Group Assignment
for (i in 1:p){

theta[i] <- equals(z[i],0)*psi+equals(z[i],1)*phi
k[i] ~ dbin(theta[i],n)

}
}

The code Exams 1.m or Exams 1.R makes inferences about group membership,

and the success rate of the knowledge group, using the model.

Exercises

Exercise 6.1.1 Draw some conclusions about the problem from the posterior dis-

tribution. Who belongs to what group, and how confident are you?

Exercise 6.1.2 The initial allocations of people to the two groups in this code is

random, and so will be different every time you run it. Check that this does

not affect the final results from sampling.

Exercise 6.1.3 Include an extra person in the exam, with a score of 28 out of 40.

What does their posterior for z tell you? Now add four extra people, all with

the score 28 out of 40. Explain the change these extra people make to the

inference.

Exercise 6.1.4 What happens if you change the prior on the success rate of the

second group to be uniform over the whole range from 0 to 1, and so allow

for worse-than-guessing performance?
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Exercise 6.1.5 What happens if you change the initial expectation that everybody

is equally likely to belong to either group, and have an expectation that people

generally are not guessing, with (say), zi ∼ Bernoulli
(
0.9

)
?

6.2 Exam scores with individual differences

The previous example shows how sampling can model data as coming from a mix-

ture of sources, and infer properties of these latent groups. But the specific model

has at least one big weakness, which is that it assumes all the people in the knowl-

edge group have exactly the same rate of success on the questions.

One straightforward way to allow for individual differences in the knowledge

group is to extend the model hierarchically. This involves drawing the success rate

for each of the people in the knowledge group from an over-arching distribution.

One convenient (but not perfect) choice for this “individual differences” distribution

is a Gaussian. It is a natural statistical model for individual variation, at least in

the absence of any richer theory. But it has the problem of allowing for success

rates below zero and above one. An inelegant but practical and effective way to

deal with this is simply to restrict the sampled success rates to the valid range.

µ

λ

n

ki

θi

zi

ψφi

i people
zi ∼ Bernoulli(0.5)

µ ∼ Uniform(0.5, 1)

λ ∼ Gamma(0.001, 0.001)

φi ∼ Gaussian(µ, λ)I(0,1)

ψ ← 0.5

θi ←







φi if zi = 1

ψ if zi = 0

ki ∼ Binomial(θi, n)

tFig. 6.2 Graphical model for inferring membership of two latent groups, with different rates of

success in answering exam questions, allowing for individual differences in the

knowledge group.

A graphical model that implements this idea is shown in Figure 6.2. It extends the

original model by having a knowledge group success rate φi for the ith person. These

success rates are drawn from a Gaussian distribution with mean µ and precision
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Box 6.1 Assessing and improving convergence

In a perfect world, a single MCMC chain would immediately begin drawing

samples from the posterior distribution, and the only computational issue

would be how many are needed to form a sufficiently precise approximation.

This ideal state of affairs is often not what happens, and latent-mixture

models are notorious for needing convergence checks. So, this is a good place

to list some checks (see also Gelman, 1996; Gelman & Hill, 2007).

The basic principle is that, when the sampling process has converged,

chains with substantially different starting values should be indistinguishable

from each other. One implication of this requirement is that chains should

vary around a constant mean, so a slow drift up or down signals a problem.

And, if the sampling process has converged, each individual chain should

look like a “fat hairy caterpillar,” because this visual appearance is generated

when successive values are relatively independent. As a formal test for

convergence, the R̂ statistic (Gelman & Rubin, 1992) is widely used. It is

basically a measure of between-chain to within-chain variance, and so values

close to 1 indicate convergence. As a rule of thumb, values higher than 1.1

are (deeply) suspect. If you were not paying much attention to the rhat

values WinBUGS is returning to Matlab and R in previous modeling exercises,

now is a good time to start checking them.

There are three basic remedies for a lack of convergence, easily imple-

mented in WinBUGS for any model. The first is simply to collect many more

samples, or more chains of samples, and wait (and hope) for convergence.

The second is to increase the number of burn-in samples, which are initial

samples in a chain that are discarded. This will be effective if separate chains

are sensitive to their starting points, and take some time to converge. A

worked example of this is presented in Section 11.2. The third is to thin the

samples, by retaining only one out of every n. This will be effective if a chain

is autocorrelated, with lack of independence between samples. A worked

example of this is presented in Section 3.6. There are other, more advanced,

methods for improving convergence in WinBUGS, involving changing the

model itself. Worked examples of the parameter expansion method are

presented in Sections 11.3 and 14.2.

λ. The mean µ is given a uniform prior between 0.5 and 1.0, consistent with the

original assumption that people in the knowledge group have a greater-than-chance

success rate.
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Box 6.2 Scripts for graphical models

The scripts that implement graphical models in WinBUGS are declarative,

rather than procedural. This means the order of the commands does not

matter. All that a script does is define the observed and unobserved variables

in a graphical model, saying how they are distributed, and how they relate to

each other. This is inherently a structure, rather than a process, and so order is

not important. In practice this means, for example, that a separate loop is not

needed in a script like Exam 2.txt to define k[i], z[i], and phi[i]. Exactly

the same graphical model would be defined if they were all placed inside one

for (i in 1:p) loop. Sometimes, however, it is conceptually clearer to use

separate loops to implement different parts of a graphical model.

The script Exams 2.txt implements the graphical model in WinBUGS:

# Exam Scores With Individual Differences
model{
# Rates Given By Each Person’s Group Assignment
for (i in 1:p){

theta[i] <- equals(z[i],0)*psi+equals(z[i],1)*phi[i]
k[i] ~ dbin(theta[i],n)

}
# Each Person Belongs To One Of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(0.5)
}
# The Second Group Allows Individual Differences
for (i in 1:p){

phi[i] ~ dnorm(mu,lambda)I(0,1)
}
# First Group Guesses
psi <- 0.5
# Second Group Mean, Precision (And Standard Deviation)
mu ~ dbeta(1,1)I(.5,1) # >0.5 Average Success Rate
lambda ~ dgamma(.001,.001)
sigma <- 1/sqrt(lambda)
# Posterior Predictive For Second Group
predphi ~ dnorm(mu,lambda)I(0,1)

}

Notice that the code includes a variable predphi that draws success rates from the

inferred Gaussian distribution of the knowledge group.

The code Exams 2.m or Exams 2.R makes inferences about group membership,

the success rate of each person in the knowledge group, and the mean and standard

deviation of the over-arching Gaussian for the knowledge group.
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Exercises

Exercise 6.2.1 Compare the results of the hierarchical model with the original

model that did not allow for individual differences.

Exercise 6.2.2 Interpret the posterior distribution of the variable predphi. How

does this distribution relate to the posterior distribution for mu?

Exercise 6.2.3 In what sense could the latent assignment of people to groups in

this case study be considered a form of model selection?

6.3 Twenty questions

Suppose a group of 10 people attend a lecture, and are asked a set of 20 questions

afterwards, with every answer being either correct or incorrect. The pattern of data

is shown in Table 6.1. From this pattern of correct and incorrect answers we want

to infer two things. The first is how well each person attended to the lecture. The

second is how hard each of the questions was.

Table 6.1 Correct and incorrect answers for 10 people on 20 questions.

Question

A B C D E F G H I J K L M N O P Q R S T

Person 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0

Person 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

Person 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

Person 5 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0

Person 6 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0

Person 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Person 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 9 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1

Person 10 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

One way to make these inferences is to specify a model of how a person’s atten-

tiveness and a question’s difficulty combine to give an overall probability that the

question will be answered correctly. A very simple model involves assuming that

each person listens to some proportion of the lecture, and that each question has

some probability of being answered correctly if the person was listening at the right

point in the lecture.

A graphical model that implements this idea is shown in Figure 6.3. Under the

model, if the ith person’s probability of listening is pi, and the jth question’s

probability of being answered correctly if the relevant information is heard is qj,
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kij

θijpi qj

i people
j questions

pi, qj ∼ Beta(1, 1)

θij ← piqj

kij ∼ Bernoulli(θij)

tFig. 6.3 Graphical model for inferring the rate people listened to a lecture, and the difficulty of

the questions.

then the probability the ith person will answer the jth question correctly is just

θij = piqj. The observed pattern of correct and incorrect answers, where kij = 1

if the ith person answered the jth question correctly, and kij = 0 if they did not,

then is a draw from a Bernoulli distribution with probability θij .

The script TwentyQuestions.txt implements the graphical model in WinBUGS:

# Twenty Questions
model{
# Correctness Of Each Answer Is Bernoulli Trial
for (i in 1:np){

for (j in 1:nq){
k[i,j] ~ dbern(theta[i,j])

}
}
# Probability Correct Is Product Of Question By Person Rates
for (i in 1:np){

for (j in 1:nq){
theta[i,j] <- p[i]*q[j]

}
}
# Priors For People and Questions
for (i in 1:np){

p[i] ~ dbeta(1,1)
}
for (j in 1:nq){

q[j] ~ dbeta(1,1)
}

}

The code TwentyQuestions.m or TwentyQuestions.R makes inferences about

the data in Table 6.1 using the model.

Exercises

Exercise 6.3.1 Draw some conclusions about how well the various people listened,

and about the difficulties of the various questions. Do the marginal posterior

distributions you are basing your inference on seem intuitively reasonable?
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Exercise 6.3.2 Now suppose that three of the answers were not recorded, for what-

ever reason. Our new data set, with missing data, now takes the form shown

in Table 6.2. Bayesian inference will automatically make predictions about

these missing values (i.e., “fill in the blanks”) by using the same probabilis-

tic model that generated the observed data. Missing data are entered as nan

(“not a number”) in Matlab, and NA (“not available”) in R or WinBUGS.

Including the variable k as one to monitor when sampling will then provide

posterior values for the missing values. That is, it provides information about

the relative likelihood of the missing values being each of the possible alter-

natives, using the statistical model and the available data. Look through the

Matlab or R code to see how all of this is implemented in the second data set.

Run the code, and interpret the posterior distributions for the three missing

values. Are they reasonable inferences?

Table 6.2 Correct, incorrect, and missing answers for 10 people on 20
questions.

Question

A B C D E F G H I J K L M N O P Q R S T

Person 1 1 1 1 1 0 0 1 1 0 1 0 0 ? 0 0 1 0 1 0 0

Person 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

Person 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

Person 5 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0

Person 6 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0

Person 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Person 8 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Person 9 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1

Person 10 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 ? 0 0

Exercise 6.3.3 The definition of the accuracy for a person on a question in terms

of the product θij = piqj is very simple to understand, but other models

of the interaction between person ability and question difficulty are used in

psychometric models. For example, the Rasch model (e.g., Andrich, 1988)

uses θij = exp (pi − qj) / (1 + exp (pi − qj)). Change the graphical model to

implement the Rasch model.

6.4 The two-country quiz

Suppose a group of people take a historical quiz, and each answer for each person is

scored as correct or incorrect. Some of the people are Thai, and some are Moldovan.
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kij

θijxi zj

α β

i people
j questions

α ∼ Uniform(0, 1)

β ∼ Uniform(0, α)

xi ∼ Bernoulli(0.5)

zj ∼ Bernoulli(0.5)

θij ←







α if xi = zj

β if xi 6= zj

kij ∼ Bernoulli(θij)

tFig. 6.4 Graphical model for inferring the country of origin for people and questions.

Some of the questions are about Thai history, and it is more likely the answer would

be known by a Thai person than a Moldovan. The rest of the questions are about

Moldovan history, and it is more likely the answer would be known by a Moldovan

than a Thai.

We do not know who is Thai or Moldovan, and we do not know the content of

the questions. All we have are the data shown in Table 6.3. Spend some time just

looking at the data, and try to infer which people are from the same country, and

which questions relate to their country.

Table 6.3 Correct and incorrect answers for 8 people on 8 questions.

Question

A B C D E F G H

Person 1 1 0 0 1 1 0 0 1

Person 2 1 0 0 1 1 0 0 1

Person 3 0 1 1 0 0 1 0 0

Person 4 0 1 1 0 0 1 1 0

Person 5 1 0 0 1 1 0 0 1

Person 6 0 0 0 1 1 0 0 1

Person 7 0 1 0 0 0 1 1 0

Person 8 0 1 1 1 0 1 1 0

A good way to make these inferences formally is to assume there are two types

of answers. For those where the nationality of the person matches the origin of the

question, the answer will be correct with high probability. For those where a person

is being asked about the other country, the answer will have a very low probability

of being correct.

A graphical model that implements this idea is shown in Figure 6.4. The rate

α is the (expected to be high) probability of a person from a country correctly
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answering a question about their country’s history. The rate β is the (expected

to be low) probability of a person correctly answering a question about the other

country’s history. To capture the knowledge about the rates, the priors constrain

α ≥ β, by defining alpha ∼ dunif(0,1) and beta ∼ dunif(0,alpha). At first

glance, this might seem inappropriate, since it specifies a prior for one parameter

in terms of another (unknown, and being inferred) parameter. Conceptually, it is

clearer to think of this syntax as a (perhaps clumsy) way to specify a joint prior

over α and β in which the α ≥ β. Graphically, the parameter space over (α, β) is

a unit square, and the prior being specified is the half of the square on one side of

the diagonal line α = β.

In the remainder of the graphical model, the binary indicator variable xi assigns

the ith person to one or other country, and zj similarly assigns the jth question to

one or other country. The probability the ith person will answer the jth question

correctly is θij, which is simply α if the country assignments match, and β if they

do not. Finally, the actual data kij indicating whether or not the answer was correct

follow a Bernoulli distribution with rate θij .

The script TwoCountryQuiz.txt implements the graphical model in WinBUGS:

# The Two Country Quiz
model{
# Probability of Answering Correctly
alpha ~ dunif(0,1) # Match
beta ~ dunif(0,alpha) # Mismatch
# Group Membership For People and Questions
for (i in 1:nx){

x[i] ~ dbern(0.5)
x1[i] <- x[i]+1

}
for (j in 1:nz){

z[j] ~ dbern(0.5)
z1[j] <- z[j]+1

}
# Probability Correct For Each Person-Question Combination By Groups
for (i in 1:nx){

for (j in 1:nz){
theta[i,j,1,1] <- alpha
theta[i,j,1,2] <- beta
theta[i,j,2,1] <- beta
theta[i,j,2,2] <- alpha

}
}
# Data Are Bernoulli By Rate
for (i in 1:nx){

for (j in 1:nz){
k[i,j] ~ dbern(theta[i,j,x1[i],z1[j]])

}
}

}

The code TwoCountryQuiz.m or TwoCountryQuiz.R makes inferences about the

data in Table 6.3 using the model.
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Exercises

Exercise 6.4.1 Interpret the posterior distributions for x[i], z[j], alpha, and

beta. Do the formal inferences agree with your original intuitions?

Exercise 6.4.2 The priors on the probabilities of answering correctly capture

knowledge about what it means to match and mismatch, by imposing an

order constraint α ≥ β. Change the code so that this information is not in-

cluded, by using priors alpha∼dbeta(1,1) and beta∼dbeta(1,1). Run a

few chains against the same data, until you get an inappropriate, and perhaps

counter-intuitive, result. The problem that is being encountered is known as

model indeterminacy or label-switching. Describe the problem, and discuss

why it comes about.

Exercise 6.4.3 Now suppose that three extra people enter the room late, and

begin to take the quiz. One of them (Late Person 1) has answered the first

four questions, the next (Late Person 2) has only answered the first question,

and the final new person (Late Person 3) is still sharpening their pencil, and

has not started the quiz. This situation can be represented as an updated data

set, now with missing data, as in Table 6.4. Interpret the inferences the model

makes about the nationality of the late people, and whether or not they will

get the unfinished questions correct.

Table 6.4 Correct, incorrect, and missing answers for 8 people and 3 late
people on 8 questions.

Question

A B C D E F G H

Person 1 1 0 0 1 1 0 0 1

Person 2 1 0 0 1 1 0 0 1

Person 3 0 1 1 0 0 1 0 0

Person 4 0 1 1 0 0 1 1 0

Person 5 1 0 0 1 1 0 0 1

Person 6 0 0 0 1 1 0 0 1

Person 7 0 1 0 0 0 1 1 0

Person 8 0 1 1 1 0 1 1 0

Late Person 1 1 0 0 1 ? ? ? ?

Late Person 2 0 ? ? ? ? ? ? ?

Late Person 3 ? ? ? ? ? ? ? ?

Exercise 6.4.4 Finally, suppose that you are now given the correctness scores for

a set of 10 new people, whose data were not previously available, but who

form part of the same group of people we are studying. The updated data

set is shown in Table 6.5. Interpret the inferences the model makes about the

nationality of the new people. Revisit the inferences about the late people,

and whether or not they will get the unfinished questions correct. Does the
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inference drawn by the model for the third late person match your intuition?

There is a problem here. How could it be fixed?

Table 6.5 Correct, incorrect, and missing answers for 8 people, 3 late people,
and 10 new people on 8 questions.

Question

A B C D E F G H

New Person 1 1 0 0 1 1 0 0 1

New Person 2 1 0 0 1 1 0 0 1

New Person 3 1 0 0 1 1 0 0 1

New Person 4 1 0 0 1 1 0 0 1

New Person 5 1 0 0 1 1 0 0 1

New Person 6 1 0 0 1 1 0 0 1

New Person 7 1 0 0 1 1 0 0 1

New Person 8 1 0 0 1 1 0 0 1

New Person 9 1 0 0 1 1 0 0 1

New Person 10 1 0 0 1 1 0 0 1

Person 1 1 0 0 1 1 0 0 1

Person 2 1 0 0 1 1 0 0 1

Person 3 0 1 1 0 0 1 0 0

Person 4 0 1 1 0 0 1 1 0

Person 5 1 0 0 1 1 0 0 1

Person 6 0 0 0 1 1 0 0 1

Person 7 0 1 0 0 0 1 1 0

Person 8 0 1 1 1 0 1 1 0

Late Person 1 1 0 0 1 ? ? ? ?

Late Person 2 0 ? ? ? ? ? ? ?

Late Person 3 ? ? ? ? ? ? ? ?

6.5 Assessment of malingering

Armed with the knowledge from the previous sections, we now consider the practical

challenge of detecting if people cheat on a test. For example, people who have

been in a car accident may seek financial compensation from insurance companies

by feigning cognitive impairment such as pronounced memory loss. When these

people are confronted with a memory test that is intended to measure the extent

of their impairment, they may deliberately under-perform. This behavior is called

malingering, and it may be accompanied by performance much worse than that

displayed by real amnesiacs. Sometimes, for example, malingerers may perform

substantially below chance.
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n

ki

θizi

ψb ψm

i people

ψb ∼ Uniform(0.5, 1)

ψm ∼ Uniform(0, ψb)

zi ∼ Bernoulli(0.5)

θi ←







ψb if zi = 0

ψm if zi = 1

ki ∼ Binomial(θi, n)

tFig. 6.5 Graphical model for the detection of malingering.

Malingering is not, however, always easy to detect, but is naturally addressed

by latent-mixture modeling. Using this approach, it is possible to infer which of

two categories—those who malinger, and those who are truthful or bona fide—each

person belongs to, and quantify the confidence in each of these classifications.

We consider an experimental study on malingering, in which each of p = 22

participants completed a memory test (Ortega, Wagenmakers, Lee, Markowitsch,

& Piefke, 2012). One group of participants was told to do their best. These are the

bona fide participants. The other group of participants was told to under-perform

by deliberately simulating amnesia. These are the malingerers. Out of a total of

n = 45 test items, the participants get 45, 45, 44, 45, 44, 45, 45, 45, 45, 45, 30, 20,

6, 44, 44, 27, 25, 17, 14, 27, 35, and 30 correct. Because this was an experimental

study, we know that the first 10 participants were bona fide and the next 12 were

instructed to malinger.

The first analysis is straightforward, and uses the graphical model shown in

Figure 6.5. We assume that all bona fide participants have the same ability, and so

have the same rate ψb of answering each question correctly. For the malingerers,

the rate of answering questions correctly is given by ψm, and ψb > ψm.

The script Malingering 1.txt implements the graphical model in WinBUGS:

# Malingering
model{
# Each Person Belongs to One of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(0.5)
z1[i] <- z[i]+1

}
# Bona Fide Group has Unknown Success Rate Above Chance
psi[1] ~ dunif(0.5,1)
# Malingering Group has Unknown Success Rate Below Bona Fide
psi[2] ~ dunif(0,psi[1])
# Data are Binomial with Group Rate for Each Person
for (i in 1:p){
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theta[i] <- psi[z1[i]]
k[i] ~ dbin(theta[i],n)

}
}

Notice the restriction in the dunif definition of psi[2], which prevents the inde-

terminacy or label-switching problem by ensuring that ψb > ψm.

The code Malingering 1.m or Malingering 1.R applies the model to the data.

Exercise

Exercise 6.5.1 What are your conclusions about group membership? Did all of

the participants follow the instructions?

6.6 Individual differences in malingering

As before, it may seem restrictive to assume that all members of a group have the

same chance of answering correctly. So, now we assume that the ith participant

in each group has a unique rate of answering questions correctly, θi, which is con-

strained by group-level distributions. In Section 6.2, we used group-level Gaussians.

The problem with that approach is that values can lie outside the range 0 to 1.

These values were just censored in Section 6.2, but this is not quite technically

correct, and is certainly not elegant.1

One of several alternatives is to assume that instead of being Gaussian, the

group-level distribution is Beta
(
α, β

)
. Because the Beta distribution is defined on

the interval from 0 to 1 it respects the natural boundaries of rates. So we now

have a model in which each individual binomial rate parameter is constrained by a

group-level beta distribution. This complete model is known as the beta-binomial

(e.g., Merkle, Smithson, & Verkuilen, 2011; J. B. Smith & Batchelder, 2010).

It is useful to transform the α and β parameters from the beta distribution to

a group mean µ = α/(α + β) and a measure λ = α + β that can be conceived of

as a precision, in the sense that as it increases the variability of the distribution

decreases. It is then straightforward to assign uniform priors to both µb, the group-

level mean for the bona fide participants, and µm, the group-level mean for the

malingerers. This assignment does not, however, reflect our knowledge that µb >

µm. To capture this knowledge, we could define dunif(0,mubon), as done in the

previous model.

However, for this model we apply a different approach. We first define µm as

the additive combination of µb and a difference parameter, so that logit(µm) =

logit(µb) − µd. Note that this is an additive combination on the logit scale,

1 WinBUGS conceptually conflates censoring and truncation in the I(,) notation, which is the

cause of the technical problem. JAGS has the advantage of dealing with these two related
concepts coherently.
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tFig. 6.6 The logit transformation. Probabilities range from 0 to 1 and are mapped to the

entire set of real numbers using the logit transform.

as is customary in beta-binomial models. The logit transformation is defined as

logit(θ) ≡ ln(θ/(1 − θ)) and it transforms values on the rate scale, ranging from 0

to 1, to values on the logit scale, ranging from −∞ to ∞. The logit transforma-

tion is shown in Figure 6.6, including two specific examples with the logit value 0

corresponding to probability 0.5, and the logit probability 2.94 corresponding to

probability 0.95.

The prior for µd ∼ Gaussian
(
0, 0.5

)

I(0,∞)
is a positive-only Gaussian distribu-

tion. This ensures that the group mean of the bona fide participants is always larger

than that of the malingerers. Finally, note that the base rate of malingering φ, which

was previously fixed to 0.5, is now assigned a relatively wide beta prior distribution

that is centered around 0.5. This means the model uses the data to infer group

membership and at the same time learn about the base rate.

A graphical model that implements the above ideas is shown in Figure 6.7. The

script Malingering 2.txt implements the graphical model in WinBUGS:

# Malingering, with Individual Differences
model{
# Each Person Belongs to One of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(phi) # phi is the Base Rate
z1[i] <- z[i]+1

}
# Relatively Uninformative Prior on Base Rate
phi ~ dbeta(5,5)
# Data are Binomial with Rate Given by
# Each Persons Group Assignment
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n

ki

θizi

µbµm

µd

λbλm

φ

i people

µb ∼ Beta(1, 1)

µd ∼ Gaussian(0, 0.5)I(0,∞)

λb ∼ Uniform(40, 800)

λm ∼ Uniform(4, 100)

zi ∼ Bernoulli(φ)

θi ∼







Beta(µbλb, (1− µb) λb) if zi = 0

Beta(µmλm, (1− µm)λm) if zi = 1

ki ∼ Binomial(θi, n)

logitµm ← logitµb − µd

φ ∼ Beta(5, 5)

tFig. 6.7 Graphical model for inferring membership of two latent groups, consisting of

malingerers and bona fide participants.

for (i in 1:p){
k[i] ~ dbin(theta[i,z1[i]],n)
theta[i,1] ~ dbeta(alpha[1],beta[1])
theta[i,2] ~ dbeta(alpha[2],beta[2])

}
# Transformation to Group Mean and Precision
alpha[1] <- mubon * lambdabon
beta[1] <- lambdabon * (1-mubon)
# Additivity on Logit Scale
logit(mumal) <- logit(mubon) - mudiff
alpha[2] <- mumal * lambdamal
beta[2] <- lambdamal * (1-mumal)
# Priors
mubon ~ dbeta(1,1)
mudiff ~ dnorm(0,0.5)I(0,) # Constrained to be Positive
lambdabon ~ dunif(40,800)
lambdamal ~ dunif(4,100)

}

The code Malingering 2.m or Malingering 2.R allows you to draw conclusions

about group membership and the success rate of the two groups.

Exercises

Exercise 6.6.1 Is the inferred rate of malingering consistent with what is known

about the instructions given to participants?
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Exercise 6.6.2 Assume you know that the base rate of malingering is 10%. Change

the WinBUGS script to reflect this knowledge. Do you expect any differences?

Exercise 6.6.3 Assume you know for certain that participants 1, 2, and 3 are bona

fide. Change the code to reflect this knowledge.

Exercise 6.6.4 Suppose you add a new participant. What number of questions

answered correctly by this participant would lead to the greatest uncertainty

about their group membership?

Exercise 6.6.5 Try to solve the label-switching problem by using the

dunif(0,mubon) approach instead of the logit transform.

Exercise 6.6.6 Why are the priors for λb and λm different?

6.7 Alzheimer’s recall test cheating

In this section, we apply the same latent-mixture model shown in Figure 6.7 to

different memory test data. Simple recognition and recall tasks are an important

part of screening for Alzheimer’s Disease and Related Disorders (ADRD), and are

sometimes administered over the telephone. This practice raises the possibility of

people cheating by, for example, writing down the words they are being asked to

remember.

The data we use come from an informal experiment, in which 118 people were

either asked to complete the test normally, or instructed to cheat. The particular

test used was a complicated sequence of immediate and delayed free recall tasks,

which we simplify to give a simple score correct out of 40 for each person. By design,

there are 61 bona fide people who are known to have done the task as intended,

and 57 people who are known to have cheated.

This graphical model is shown in Figure 6.8, and is essentially the same as for the

previous example on malingering in Figure 6.7. It changes the names of variables

from malingering to cheating as appropriate, uses different priors on the precisions

of the group distributions, and makes the mean of accuracy rate for the cheaters

higher than that of the bona fide people, since the impact of cheating is to recall

more words than would otherwise be the case.

The script Cheating.txt implements the analysis in WinBUGS:

# Cheating Latent-Mixture Model
model{
# Each Person Belongs to One of Two Latent Groups
for (i in 1:p){

z[i] ~ dbern(phi) # phi is the Base Rate
z1[i] <- z[i]+1

}
# Relatively Uninformative Prior on Base Rate
phi ~ dbeta(5,5)
# Data are Binomial with Rate Given by
# Each Persons Group Assignment
for (i in 1:p){
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µd

λbλc

φ
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µb ∼ Beta(1, 1)

µd ∼ Gaussian(0, 0.5)I(0,∞)

λb ∼ Uniform(5, 50)

λc ∼ Uniform(5, 50)

zi ∼ Bernoulli(φ)

θi ∼







Beta(µbλb, (1− µb)λb) if zi = 0

Beta(µcλc, (1− µc)λc) if zi = 1

ki ∼ Binomial(θi, n)

logitµc ← logitµb + µd

φ ∼ Beta(5, 5)

tFig. 6.8 Graphical model for inferring membership of two latent groups, consisting of cheaters

and bona fide people in a memory test.

k[i] ~ dbin(theta[i,z1[i]],n)
thetatmp[i,1] ~ dbeta(alpha[1],beta[1])
theta[i,1] <- max(.01,min(.99,thetatmp[i,1]))
thetatmp[i,2] ~ dbeta(alpha[2],beta[2])
theta[i,2] <- max(.01,min(.99,thetatmp[i,2]))

}
# Transformation to Group Mean and Precision
alpha[1] <- mubon * lambdabon
beta[1] <- lambdabon * (1-mubon)
# Additivity on Logit Scale
logit(muche) <- logit(mubon) + mudiff # Note the "+"
alpha[2] <- muche * lambdache
beta[2] <- lambdache * (1-muche)
# Priors
mubon ~ dbeta(1,1)
mudiff ~ dnorm(0,0.5)I(0,) # Constrained to be Positive
lambdabon ~ dunif(5,40)
lambdache ~ dunif(5,40)
# Correct Count
for (i in 1:p){

pct[i] <- equals(z[i],truth[i])
}
pc <- sum(pct[1:p])

}

Note that the script includes a variable pc that keeps track of the accuracy of each

classification made in sampling by comparing each person’s latent assignment to

the known truth from the experimental design.

The code Cheating.m or Cheating.R applies the graphical model to the data.

We focus our analysis of the results firstly on the classification accuracy of the
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Box 6.3 Undefined real result

In WinBUGS, error messages are called traps, and some traps are more serious

than others. One of the more serious regularly occurring traps is “undefined

real result.” This trap indicates numerical overflow or underflow caused by a

sample with very low likelihood. This can happen when you have not specified

your model well enough. In particular, the prior distribution for a standard de-

viation may be too wide, thus allowing extreme values that are highly unlikely

in light of the data (and, most often, also unlikely in light of prior knowledge).

Initial values may also be to blame, and this is why it can be better to specify

those yourself instead of having WinBUGS pick them automatically. Although

the “undefined real result” trap can be a nuisance, in the end it may actually

help you improve your model.

model. The top panel of Figure 6.9 summarizes the data, showing the distribution

of correctly recalled words in both the bona fide and cheater groups. It is clear that

cheaters generally recall more words, but that there is overlap between the groups.

One way to provide a benchmark classification accuracy is to consider the best

possible cut-off. This is a total correct score below which a person is classified as

bona fide, and at or above which they are classified as a cheater. The line in the

bottom panel in Figure 6.9 shows the classification accuracy for all possible cut-offs,

which peaks at 86.4% accuracy using the cut-off of 35. The gray distribution at the

left of the panel is the posterior distribution of the pc variable, showing the range

of accuracy achieved by the latent-mixture model.

Using a generative model to solve classification problems is unlikely to work as

well as the best discriminative methods from machine learning and statistics. This

is not because of failings of the Bayesian approach, but because the models we

develop are imperfect accounts of how data are generated. If the focus is purely

on prediction, other statistical approaches, including especially ones that combine

the best aspects of generative and discriminative modeling, may be superior (e.g.,

Lasserre, Bishop, & Minka, 2006).

The advantage of the generative model is in providing details about the underly-

ing processes assumed to produce the data, particularly by quantifying uncertainty.

A good example of this important feature is shown in Figure 6.10, which shows the

relationship between the total correct raw data score, and the posterior uncertainty

about classification as a cheater, for each person. The broken lines connecting 35

people and a classification probability of 0.5 shows that the model infers people with

scores above 35 as more likely than not to be cheaters. But it also shows how certain

the model is about each classification, which provides more information (and more

probabilistically coherent information) than many machine-learning methods.

This information about uncertainty is useful, for example, if there are costs or

utilities associated with different classification decisions. Suppose that raising a
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achieved using various cut-offs to separate the groups, and, with the distribution, the

accuracy achieved by the latent-mixture model.

false-alarm and suspecting someone of cheating on the screening test costs $25,

perhaps through a wasted follow-up-in-person test, but that missing someone who

cheated on the screening test costs $100, perhaps through providing insurance that

should have been withheld. With these utilities, the decision should be to classify

people as bona fide only if it is four times more likely than them being a cheater. In

other words, we need 80% certainty they are bona fide. The posterior distribution

of the latent assignment variable z provides exactly this information. Under this set

of utilities, as shown by the broken lines connecting 30 people and a classification

probability of 0.2 in Figure 6.10, only people with a total correct score below 30

(not 35) should be treated as bona fide.

Exercises

Exercise 6.7.1 Suppose the utilities are very different, so that a false alarm costs

$100, because of the risk of litigation in a false accusation, but misses are

relatively harmless, costing $10 in wasted administrative costs. What decisions

should be made about bona fide and cheating people now?
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Exercise 6.7.2 What other potential information, besides the uncertainty about

classification, does the model provide? Give at least one concrete example.
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