
Univariate linear regression of order m

A linear regression model of order m based on a single variable (univariate) can be
expressed with the following equation:

If m = 1 this general equation can be reduced to that referred to simple linear regression,
i.e., to first order univariate linear regression.

A more general expression for linear regression model of order m is:

For a single observation the equation becomes:

Thus, the random error can be expressed as:
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The estimate of the m+1 (p) model parameters, β0, β1,…βm, can be made using the Ordinary
Least Squares (OLS) approach, that minimizes the sum of squared errors:

Supposing that n values of response Y are obtained by setting as many values of the
independent variable (regressor) X, the following system of equations can be written:

The system can be solved more easily by adopting an approach based on matrices.
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At this aim, the following column vectors
are defined:
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In addition, matrix X, including values
assumed by powers of the independent
variable X (from X0, i.e. 1, to Xm), is
introduced:

In this case the first column is made up
only of «1» values, to account for the
presence of the β0 term in the model
equation.
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The system of n equations with p (i.e., m + 1) unknowns can thus be written in matricial
notation:

The OLS criterion, i.e., finding , can be written in matricial notation as:

i.e., finding the minimum of the scalar (or inner) product between column vector ε and its
transpose (indicated as εT) .

Since:
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Since, in matricial notation, ε = y – Xβ, the quantity S to be minimized can be
expressed as:

It is worth noting that products yTXβ and βTXTy are equal, thus S can be expressed as:
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By analogy with the OLS procedure referred to simple linear regression, the minimization
of S is obtained by equalizing to 0 its first derivative with respect to βT, i.e., to a row vector
(the transpose of vector β) including values of all regression parameters:

Notably, the first term in the expression of S, i.e., the scalar product yTy = y1
2 + y2

2 + …. +
yk

2, does not depend on βT, thus its derivative with respect to βT is zero.

As for the remaining two terms, some general rules on derivatives involving
vectors/matrices need to be introduced for their calculation.



First, given a scalar function y(x), where x is a row vector, the first derivative of y(x) with
respect to x is a row vector expressed by the following formulation:

If the scalar function is y(bT) = bTa = a1b1 + a2b2 + …. + akbk , then:
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Consequently, the first derivative of the second term of S with respect to βT is:
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Another general rule for derivatives of vectors/matrices has to be 
exploited to calculate the first derivative of the third term of S:

In this case the XTX product corresponds to a symmetric matrix.

In fact, if we consider the following X matrix:

its transpose is: 

The XTX product corresponds to the matrix:



The following general case can thus be considered as a model of the βT (XTX) β term :

y = bT A b



Starting from this general example, the first derivative of the third term of S can be easily
calculated:

Consequently:

If the OLS estimator of vector β is indicated as b, the following equation must be valid:
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As an example, the solution obtained in the case of second order univariate regression is
described in the following:



If scalar products between matrices and vectors are developed, the following equations are
obtained:

Equations for b0 ad b1 referred to simple linear regression can be easily obtained from the
first two equations after removing the term including b2.

Once estimates of all parameters are obtained, the fitted model is easily constructed.
If p = m+1 parameters are considered, the following equation is obtained:

and residuals ei are calculated:
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Estimate for σ2

In order to estimate σ2 the sum of squares referred to residuals (errors), SSE, is considered:
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Since the equation can be written as:yXbXX TT =)(

By analogy with the E(SSE) value found for simple linear regression, the expectation of SSE
is:

thus an unbiased estimator of σ2 is:
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Expectation and variance of vector b

As demonstrated below, vector b is an unbiased estimator of vector β, i.e.: β(b) =E
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corresponds to the identity matrix:

Consequently:

and, considering that , the following equation can be written:
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Variance of b (variance-covariance matrix) can be obtained by exploiting the general rule:

and considering the equation , i.e., the assumption that the error is the same
for all responses (homoschedasticity).

Indeed:

Note that:

1) Var(y) = Var(ε) since each of the components of vector y, i.e., experimental values yi, are
the sum of a deterministic part, which has no variance, and of εi, the component of
vector ε.

2) since XTX is a symmetrical matrix, also (XTX)-1 is symmetrical, thus its transpose is equal
to it.
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Note that the variance of b can be obtained also using the following equations:

external product
of matrices



The variance of single regression parameters, bi, can be expressed as:

where Cii is the diagonal element of matrix (XTX)-1 corresponding to bi.

The covariances between regression parameters can be obtained by multiplying the non
diagonal terms of matrix (XTX)-1 by σ2.

It can be demonstrated that vector b represents the most efficient unbiased estimator of β,
i.e., it has the minimum variance among unbiased linear estimators.

Since:



Confidence intervals for bi and Ŷ0 values at a α significance level

Since the variance of a specific parameter bi can be calculated as follows:

with

the confidence interval for bi at a α significance level can be calculated as follows:

By analogy with simple linear regression, a confidence interval can be calculated also for Ŷ0,
i.e., the value of response predicted by the model for a specific x0:

Consequently:
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0=0Ŷ [ ]





















=

m

m

b

b
b

XXX
.
.........1Ŷ
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According to the original assumption on response normality, the following relation can thus
be written:
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The confidence interval for Ŷ0 at a α significance level can thus be expressed as:

where:
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A numerical example for univariate regression of order 2

Let us suppose that the following seven couples of (x,y) values are available:

Controlled variable x Measured y

-3 30

-2 48

-1 68

0 98

+1 120

+2 160

+3 232
0

50

100

150

200

250

-4 -2 0 2 4

A curvature is clearly observed, thus the following second order model can be adopted:

In this case: m = 2, p = 3, df = n-p = 7 – 3 = 4  



Moreover:

X = XT =

1 -3 9

1 -2 4

1 -1 1

1 0 0

1 1 1

1 2 4

1 3 9

1 1 1 1 1 1 1

-3 -2 -1 0 1 2 3

9 4 1 0 1 4 9

XTX=
7 0 28

0 28 0

28 0 196

(XTX)-1=
0.333 0.000 -0.048

0.000 0.036 0.000

-0.048 0.000 0.012

b = (XTX)-1 XT y =
91.143

31.500

4.214

Y = 91.143 + 31.500 X  + 4.214 X2

Note than
both matrices
are symmetric



Predicted response values and residuals can now be easily calculated and plotted:

Controlled
variable x

Measured
y

Estimated
y

Residual Squared
residual

-3 30 34.5 -4.5 20.25

-2 48 45 3 9

-1 68 63.8 4.2 17.64

0 98 91.1 6.9 47.61

+1 120 126.8 -6.8 46.24

+2 160 171 -11 121

+3 232 223.6 8.4 70.56

Measured Y

Estimated Y

Residuals



Since SSE = 332.3, and:

0.333       0       -0.048                27.5 0       -4.0

=  83.075       0        0.036       0           =          0        3.0 0
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1TXXb −= )(ˆ)Var( 2σ

95% confidence intervals for parameters bi are given by the following equation:

correspond to red diagonal elements reported in the matrix shown before, thus:

bi ± t4, 0.975 [V(bi)]1/2    where: iii C2ˆ)(bV̂ σ=

b0) 91.143 ± 2.77 (27.5)1/2 =  91 ± 15 

b1) 31.500 ± 2.77 (3)1/2 = 32 ± 5

b2) 4.214 ± 2.77 (1)1/2 =  4 ± 3
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The confidence interval for Ŷ0 corresponding to x0 = 0.5 is obtained as follows. First the
calculation of Ŷ0 is made:

then the general expression of the interval is considered:

1

Ŷ0 = bT x0 = [91.143   31.5    4.214]      0.5 =  107.94
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Since:

the 95% confidence interval is expressed as:

xT
0(XTX)-1x0 = 0.319

107.94 ± 2.77 [83.075 × 0.319]1/2 = 108 ± 14



It is worth noting that inverse regression can be performed also in the case of second order
univariate linear regression, i.e., by calculating prediction bands and then extrapolating the
confidence interval for a specific x0 value, once the corresponding y0 value is fixed.

An example of the procedure is shown in the following figure:

Notably, confidence bands are well distinct from prediction bands due to low precision.

Y0

X0



Use of Minitab 18 to perform univariate regression of order 2

Minitab 18 is able to perform univariate regression of different orders.

The procedure is started by introducing data referred to variable X and to response Y in
columns C1 and C2, respectively.

The choice of a regression model can be done by accessing the Stat > Regression menu,
and then the Regression > Fit Regression Model… option.



Columns reporting values for response and
independent variable (a continuous
predictor, in the specific case) are selected
in the main window for regression.

The Model… window can be opened
afterwards, and the order of regression can
be fixed in the Terms through order box.

If value 2 is selected in the box, like in the
present case, terms in the model are
expressed as C1 and C1*C1 (i.e., C12).
Note that the constant term can be included
in the model by selecting the appropriate
box.

When only one predictor is present,
interaction terms and cross predictors
cannot be selected.



Several types of results can be selected to be
displayed in the Results menu, including the
Analysis of variance.

The Graphs menu enables the selection of plots
related to residuals, that can be displayed
together with the regression curve.

The latter is always accompanied by confidence
and prediction bands, calculated for the
probability level (e.g., 95%) selected in the
Options menu of the main Regression window.



The regression curve obtained with data shown before, accompanied by confidence (CI) and
prediction (PI) bands is reported in the following figure:

The value of correlation coefficient (R-Sq) is also reported, along with the S value, which
corresponds to:
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Information related to regression is reported,
in tabular form, inside the Session window:

The regression equation and the values of
coefficients, accompanied by their standard
errors (SE) are indicated.

Moreover, the ANOVA table for regression is
reported.
In this table F-values enable the evaluation of
significance for the regression and, in
particular, for terms referred to the first (C1)
and the second (C1*C1) power of the variable
value.

As inferred from the corresponding p-values,
the model is correct, since both terms are
significant (p values are lower than 0.05).

Note that T-values correspond to ratios
between coefficient values and the
corresponding standard errors.
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