Univariate linear regression of order m

A linear regression model of order m based on a single variable (univariate) can be
expressed with the following equation:

If m =1 this general equation can be reduced to that referred to simple linear regression,
i.e., to first order univariate linear regression.

A more general expression for linear regression model of order m is:

Y:f(Xbﬁoﬁl ----------- Bm)+'5

Random
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For a single observation the equation becomes:

Y, = F( X BBy oo Bm)+ &

Thus, the random error can be expressed as:



The estimate of the m+1 (p) model parameters, 3,, B4,---B,,, can be made using the Ordinary
Least Squares (OLS) approach, that minimizes the sum of squared errors:

min » &’
1

Supposing that n values of response Y are obtained by setting as many values of the
independent variable (regressor) X, the following system of equations can be written:

The system can be solved more easily by adopting an approach based on matrices.



At this aim, the following column vectors %
are defined: 1 P “
. Y2 Bl 82
Y=Y B=| 85 €= ¢
Yn Bm 81’1
Y P \ P \ 7
Responses Parameters Random
vector vector errors vector
(nx1) (px1) (nx1)
In addition, matrix X, including values /l- D D € Xm
assumed by powers of the independent 1 1 1 1
variable X (from X°, i.e. 1, to XM), is 1 X. X2 xX° X
: 2 2 2 - 2
introduced:

In this case the first column is made up : : : :

only of «1» values, to account for the 2 3 m
, 1 X, X2 X .. X

presence of the [, term in the model \

equation.




The system of n equations with p (i.e., m + 1) unknowns can thus be written in matricial
notation:

y=XB+¢

(nx1)  (nxp) (px1) (nx1)

The OLS criterion, i.e., finding min Z,giz , can be written in matricial notation as: min(g' €)
1

i.e., finding the minimum of the scalar (or inner) product between column vector € and its
transpose (indicated as €7) .

Since:
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Since, in matricial notation, € = Yy — XB, the quantity S to be minimized can be
expressed as:

S=>¢&l=¢"e=(y—XB) (y—XB)
i=1
It is worth noting that products y' X3 and Xy are equal, thus S can be expressed as:
S=y'y-2p"X"y+p" (X" X)B

By analogy with the OLS procedure referred to simple linear regression, the minimization
of S is obtained by equalizing to 0 its first derivative with respect to BT, i.e., to a row vector
(the transpose of vector 8) including values of all regression parameters:

a8
op’

Notably, the first term in the expression of S, i.e., the scalar product yly =y, 2 + y,2 + ... +
y,2, does not depend on BT, thus its derivative with respect to BT is zero.

As for the remaining two terms, some general rules on derivatives involving
vectors/matrices need to be introduced for their calculation.



First, given a scalar function y(x), where x is a row vector, the first derivative of y(x) with
respect to x is a row vector expressed by the following formulation:

W _[w w W
ax dxq dxy Oz
If the scalar function is y(b") =bTa=a b, +a,b, + ... + a,b, , then:

dy 0(bTa)
a(bT)  aT)

a

Consequently, the first derivative of the second term of S with respect to BT is:

o-28"X"y) o
op"

y



Another general rule for derivatives of vectors/matrices has to be
exploited to calculate the first derivative of the third term of S:

In this case the X™X product corresponds to a symmetric matrix.

In fact, if we consider the following X matrix:

h X, 2|
1]|X, ;
xX=|Il -1- its transpose is: X'=
1| IX, X2
= )/

BT (XX)P

_—
1 1 |
X X, X,
@12 Xf ) Xi

The X™X product corresponds to the matrix: X'X = ZX;-




The following general case can thus be considered as a model of the BT (X™X) 3 term :
b a a
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Starting from this general example, the first derivative of the third term of S can be easily
calculated:

oBTX™XB) . r
= — 2(X"X)B

Consequently:

;;T =2X"y+2(X"X)B

If the OLS estimator of vector B is indicated as b, the following equation must be valid:

2X'y+2(X'X)b=0

4

X"Xb=X"y mp b=X"'X)"X"y

(px1) (pxp) (px1)



As an example, the solution obtained in the case of second order univariate regression is
described in the following:

Y =B, +B,X+B,X*+¢
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If scalar products between matrices and vectors are developed, the following equations are
obtained:

b()ll + b]ZXf'FbZZX?:ZYf
1=1 i=1 i=1
by SX, + b XX+ by X =¥ x Y,
i=1 i=1 i=1 i=1

by XX+ by 2% + by XX =Y xiy,
i=1 i=1 i=1 i=1

Equations for b, ad b, referred to simple linear regression can be easily obtained from the
first two equations after removing the term including b,.

Once estimates of all parameters are obtained, the fitted model is easily constructed.
If p = m+1 parameters are considered, the following equation is obtained:

Y. =b,+b,X.+b,X +....... +b X"

N

and residuals e, are calculated: €; = Yi_ Yi



Estimate for o2

In order to estimate 62 the sum of squares referred to residuals (errors), SSE, is considered:

SSE = Zn:(Yi—SA(i)z = Zn:eiz —e'e =(y—Xb) (y—Xb)=
=1 1=1

=y'y-b' X'y -y'Xb+b'X"Xb =
=y'y-2b' X'y +b'X"'Xb
since (X' X)b = X"y the equation can be written as:
SSE =yTy -b"X"y

By analogy with the E(SSE) value found for simple linear regression, the expectation of SSE
is:

E(SSE) =0’ (n- p)
> SSE

thus an unbiased estimator of 62is: g2 = &2 =
n—p




Expectation and variance of vector b

As demonstrated below, vector b is an unbiased estimator of vector f, i.e.: E(b) =8
b=X"X)"'X'y=(X"X)'X"XB+e)=(X"X)"'X'Xp+(X"X)'X"¢

(X"X)"X"X corresponds to the identity matrix:

1 00 --- 0
010 --- 0
=001 -0
000 - 1]

Consequently: b=p+(X'X)"'X'e

and, considering that E(g) — (), the following equation can be written:

E(b) = E[p+(X"X) " X"e|= E@) + (X"X) ' X" E(e) =p



Variance of b (variance-covariance matrix) can be obtained by exploiting the general rule:
Var(Ag) = A Var(e)A'

and considering the equation Var(a)z o’l ,i.e., the assumption that the error is the same
for all responses (homoschedasticity).

Indeed:

Var(b) = Var|(X"X) " X"y = [(X"X) " X" |Var(y)[(X"X) "' X" | =

= [(X™X) X" |Var(e) X(X™X) ! |= [(XTX) X" [ 1[X(XTX) |
- o' (X'X)'X'X(X'X)' =o' (XTX) !
Note that:
1) Var(y) = Var(g) since each of the components of vectory, i.e., experimental values y,, are
the sum of a deterministic part, which has no variance, and of ¢, the component of

vector €.

2) since X™X is a symmetrical matrix, also (X"™X)* is symmetrical, thus its transpose is equal
to it.



Note that the variance of b can be obtained also using the following equations:
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Since:

E o’ Cﬂl o’ C'Dm

Varh) = (X" = | 7“0 [ECuT
o Cmo J:le U:Cm.ml

The variance of single regression parameters, b,, can be expressed as:

2
Var(b.)=0"C,
where C; is the diagonal element of matrix (X™X) corresponding to b..

The covariances between regression parameters can be obtained by multiplying the non
diagonal terms of matrix (X"™X)* by 2.

It can be demonstrated that vector b represents the most efficient unbiased estimator of 3,
i.e., it has the minimum variance among unbiased linear estimators.



Confidence intervals for b, and Y, values at a a significance level

Since the variance of a specific parameter b, can be calculated as follows:
_ SSE
n—p

" . AD . AD
V(b,)=0c"C, with o
the confidence interval for b, at a a significance level can be calculated as follows:

bi T tn—p,(l—a/z) [V(bl )]1/2 — bi T tn—p,(l—OL/Z) [&2(:[.1. ]1/2

By analogy with simple linear regression, a confidence interval can be calculated also for VO,
i.e., the value of response predicted by the model for a specific x,:

bO
. b
Y, =x,b # Y, =l x, X2... x|
b,.

Consequently:

E(?o) = X(TB



Var(Y,) = Var(x;b) = E {i}o - E(?D)I{TD - E(';’D):T } =

= E[(xurb—quB) (x,b—x, 3)I]: E[XuT(b_B) (b_B)IXu]:

- X E[b-B) b-B) ] x, = x! Var®)x, = x}o* (X" X) 'x,

According to the original assumption on response normality, the following relation can thus
be written:

: T 2T (v Tyy-1
Y, ~ N(X,B,07%, (X X) 'x;)
The confidence interval for ?O at a a significance level can thus be expressed as:

T AT T /2
X'bti, 06 XEXTX) X, |

1/2
. SSE
where: o =
n—p




A numerical example for univariate regression of order 2

Let us suppose that the following seven couples of (x,y) values are available:

Controlled variable x

250
-3 30 o
) 48 200
-1 68 150 d
o
0 98 100 °
+1 120 °
50 °

+2 160 ¢

0
+3 232 -4 2 0 2

A curvature is clearly observed, thus the following second order model can be adopted:
Y=B,+B,X+B,X"+¢

Inthiscase:m=2,p=3,df=n-p=7-3=4



Moreover:

M (3 9
1 -2
4 1 1 1 1 1 1 1
: N ' XT 3 2 1 0] 1 2 3
X= | 0 0
9 4 1 0 1 4 9
1 1 1
1 2 4
\1 3 9
7 0 28 0.333 0.000 -0.048
Note than
XTX= 0 28 0 (XTX)-1= 0.000 0.036 0.000 both matrices
are symmetric
28 0 196 -0.048 0.000 0.012
91.143

b=(XX)1XTy=|31500 ~ EEP | Y=91.143+31.500X +4.214 X
4.214




Predicted response values and residuals can now be easily calculated and plotted:

Controlled | Measured | Estimated | Residual Squared
variable x residual

34.5 20.25
-2 48 45 3 9
-1 68 63.8 4.2 17.64
0 98 91.1 6.9 47.61
+1 120 126.8 -6.8 46.24
+2 160 171 -11 121
+3 232 223.6 8.4 70.56
T .
200
- # MeasuredY
450 Ll
s M EstimatedY
105 o
~ )
- 50 Residuals
[ ]
Ia -3 -2 -1 + 1 2 1 4




2

Since SSE=332.3, ¢~ = SSEb

n—p
0.333
Var(b) =6*(X'X)™" = 83.075| 0
-0.048

0
0.036
0

=332.3/4=83.075 and:

-0.048
0
0.012

27.5 0 -4.0

-4.0 0 1

95% confidence intervals for parameters b, are given by the following equation:

bi T t4 0975 [\A/(bi)]l/2 where: \A/(bl-) = 5'2Cii

correspond to red diagonal elements reported in the matrix shown before, thus:

b,) 91.143 +2.77 (27.5)¥/2= 91+ 15
b,) 31.500+2.77 (3)¥/2=32+5
b,) 4.214+2.77 (1)¥2 = 4 43




The confidence interval for Vo corresponding to x,= 0.5 is obtained as follows. First the

calculation of Y, is made:
a I

1
Y,=b"x,=[91.143 31.5 4.214] | 0.5 | = 107.94
0.25

- 4

then the general expression of the interval is considered:

T A2 T v Ty-1 /2
Xﬂbitn—p,(l—a/Z) [O' X, (X" X) Xo]l

Since:

x"o(X™X)x, = 0.319
the 95% confidence interval is expressed as:

107.94 £ 2.77 [83.075 x 0.319]%2 =108 + 14



It is worth noting that inverse regression can be performed also in the case of second order
univariate linear regression, i.e., by calculating prediction bands and then extrapolating the
confidence interval for a specific x, value, once the corresponding y, value is fixed.

An example of the procedure is shown in the following figure:

o
~

<
o
1

Areal Area int st
o
N

3 4 5
[CHLOROMETHANE] (ng/L)

Notably, confidence bands are well distinct from prediction bands due to low precision.



Use of Minitab 18 to perform univariate regression of order 2

Minitab 18 is able to perform univariate regression of different orders.

The procedure is started by introducing data referred to variable X and to response Y in
columns C1 and C2, respectively.

The choice of a regression model can be done by accessing the Stat > Regression menu,
and then the Regression > Fit Regression Model... option.

Stat Graph Editor Tools Window Help Assistant

i Basic Statistics » ‘QQH‘LT%]Q > B QZIEEJE“ ‘
] Worksheet 1 #** — o
Seeson [ETe N
+ C1 Cc2 ANOVA » Regression M Fit Regression Model...
DOE » \i Nonlinear Regression... iy Best Subsets..
1 -3 30 e Y| Stability Study b |LY Predict.
Quality Tools 4 )
2 -2 48 . i \Z Orthogonal Regression... E Factorial Plots..
Reliability/Survival »
3 -1 68 - ] L Contour Plot...
Multivariate p | “_F Partial Least Squares.. B Surtace Plot
4 0 93 _ _ ’ @ Surface Plot...
] 120 Mz Esizs l—'_'_ Binary Fitted Line Plot... Overlaid Contour Plot...
5 Tables 4 Binary Logistic Regression 4 Response Optimizer..
6 2 160 Nonparametrics 4 @ Ordinal Logistic Regression...
7 3 232 Equivalence Tests ¥ ||abe Nominal Logistic Regression..
Power and Sample Size 4 ] .
Poisson Regression >




Columns reporting values for response and
independent  variable (a  continuous
predictor, in the specific case) are selected
in the main window for regression.

The Model... window can be opened
afterwards, and the order of regression can
be fixed in the Terms through order box.

Regression X

C1l Responses:
c2 2

Continuous predictors:
c1

Cateqorical predictors:

| Stepwise... |

Regression: Model

Add terms using selected predictors and model terms:

Interactions through order: hd

Terms through order: |2 LI

Predictors:

Cross predictors and terms in the model

Terms in the modelq

Options... | Coding...
Graphs... | Results... | Storage... |
Help | oK | Cancel |

Qefaultl }(l v‘vl ‘]‘l

C1
C1*C1

v Include the constant term in the model

Help | oK | Cancel

\

If value 2 is selected in the box, like in the
present case, terms in the model are
expressed as C1 and C1*C1 (i.e., C12).

Note that the constant term can be included
in the model by selecting the appropriate

L box.
When only one predictor is present,
interaction terms and cross predictors

cannot be selected.



Several types of results can be selected to be | ReoresionResuis
i i I 1 Display of resu s:v
displayed in the Results menu, including the |2®® ="

[+ Method

Analysis of variance.

v Analysis of variance

¥ Model summary

W Coefficients: |Default coefficients J

¥ Regression equation: |Separate equation for each set of categorical predictor IeveIsJ

¥ Fits and diagnostics: |Dr1|1,.r for unusual observations ﬂ

[ Durbin-Watson statistic

Help oK ‘ Cancel
The Graphs menu enables the selection of plots | teressen et x
related to residuals, that can be displayed Resicuals or plots: |ERTEN ~
together with the regression curve. Residuals plots

+ Individual plots

I Histogram of residuals

The latter is always accompanied by confidence I Normal probabilfty plot of residuals
and prediction bands, calculated for the BT A era T
probability level (e.g., 95%) selected in the | st
Options menu of the main Regression window.

" Four in one

Residuals versus the variables:

Help OK Cancel




The regression curve obtained with data shown before, accompanied by confidence (Cl) and
prediction (PI) bands is reported in the following figure:

. Fitted Line: C2 versus C1 == el %™

Fitted Line Plot
C2 =91.14 + 31.50C1 + 4.214 C172

Regression
—— - 95% ClI
—_—— 95% PI

250

3 9.12610
200 - R-5q 98.9%
R-Sqladj)  98.3%
150 -
(2]
U
100 -

50

The value of correlation coefficient (R-Sq) is also reported, along with the S value, which
corresponds to:

1/2

SSE
n—p

o =




Information related to regression is reported,

Reqgression Analysis: C2 versus C1
in tabular form, inside the Session window: g y

Analysis of Variance
Source DF  Ad)SS AdjMS  F-Value |F'-".n‘alue I

The regression equation and the values of Regression 2 292749 146374 17575 | 0.000
coefficients, accompanied by their standard cl 1 277830 277830 33359 | 0.000
SE . d t d C1*C1 1 1491.9 1491.9 17.91 0.013
errors (SE) are indicated. Error 4 3334 233
Total 6 29608.0
Moreover, the ANOVA table for regression is
reported. Model Summary
In this table F-values enable the evaluation of S Resq R-sgladj)  Resqipred)
significance for the regression and, in 912610 98.87%  98.31%  92.88%
particular, for terms referred to the first (C1)
and the second (C1*C1) power of the variable Coefficients
value. Tarm Coef SECoef T-Value P-Value  VIF
Constant 9114 3.27 17.30 0.000
) f df h d | 1 31.50 1.72 18.26 0.000 1.00
As inferred from the corresponding p-values, c1c1 4214 0086 453 0013 100

the model is correct, since both terms are

significant (p values are lower than 0.05). Regression Equation

_ €2 = 9114 +31,50C1 +4.214 C1*C1
Note that T-values correspond to ratios

between coefficient values and the
corresponding standard errors.
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