Mixture design

Mixture designs represent a special class of DoE based on response surface, in which the
response is related to a mixture made up of different ingredients, e.g., an insecticide that
blends four compounds, a food product including several components, a multi-solvent
mobile phase for liquid chromatography.

In this case factors represent the proportions of ingredients; thus, they cannot be varied
independently.
Typical assumptions of mixture designs are:

1) errors are normally (and independently) distributed with mean equal to zero and
constant variance;

2) the real response surface is continuous over the entire domain of factors;

3) response depends only on the proportions of single ingredients, not on the amount of
the mixture.



Given g components of a mixture, each with a X; proportion, the sum of such proportions
must equate a fixed total T (T = 100 if percentages are adopted):

X+X%+ L +X, =T
Each component may eventually be limited by a lower, L, and an upper limit, U;:

B9 & i

Since each component might be expressed with different units, the use of the so-called
pseudo-components can be convenient.

X —L.
A pseudo-component, indicated with X;, is defined so that its v = J J
values become 0 and 1 in correspondence of values L; and U; for J q
the actual component: T — ZL _
J
J=1

Note that the denominator of the x; expression corresponds to the difference existing
between the maximum and the minimum value of each component.

Indeed, the difference existing between the total T and the lower limits of all the other
components but the j-th one, corresponds to the upper limit of the j-th component.
According to the expression in the denominator, this is then subtracted of the L; value itself.



As an example, let us consider a mixture of two components, whose total volume is T = 50
mL.

If L, = 20 mL, then U, = 30; if L, = 0, then U, = 50.

The table of components and pseudo-components is the following:

50 0 1.0 0.0
35 15 0.5 0.5
20 30 0.0 1.0

Indeed, for the first experiment:
X, =(50-20)/[50-(20+0)] =1.0 and x,=(0-0)/[50-(20+0)]=0.0

For the second experiment:

X, = (35—20) / [50— (20 + 0)] = 15/30 = 0.5 and x, = (15-0)/[50 — (20 + 0)] = 15/30 = 0.5

For the third experiment:

x,=(20—20)/[50—-(20+0)]=0.0 and x,=(30-0)/[50— (20 +0)] =30/30=1.0



By definition, the sum of pseudo-components is always equal to 1:

q
le. =x +x,+...+x,=1.0
i=1

From a geometrical point of view this equation represents a simplex with g-1 dimensions.

As a general definition, a k-dimensional simplex is a k-dimensional polytope corresponding
to the convex envelope of k+1 vertices.

For k = 0 the simplex is a point; for k = 1 it is a segment; for k = 2 it is a triangle; for k =3 it is
a tetrahedron:

In a mixture design all experimental points lie on or inside the simplex.



Types of mixture design

1. Simplex-lattice — a design consisting in a number of experiments uniformly spaced on a
(g-1) dimensional simplex, where g represents the number of components in the
mixture. It can be not available if some constraints are present.

2. Simplex-centroid — a design consisting in (29 - 1) experiments, performed with all
components taken alone, all binary, tertiary, etc., mixtures up to the design centroid. It
can be not available in the presence of some constraints.

3. Extreme vertices — a design consisting in an experiment for each vertex (always
available).

Mathematical models for mixture designs

Mathematical models for mixture designs take into account the fundamental mixture
constraint. They are usually of three types:

1. First-degree
2. Second-degree or quadratic models

3. Third-degree or cubic models



First-degree models

In this case the basic assumption is that changes in the response depend only on the
proportions of single components in the mixture.

For a three-component mixture the model can be thus written, in terms of pseudo-
components, as:

Y=d ta X +a, X, +d; X
However, the constraint between pseudo-components has to be considered:
X +X+Xx=1

This equation can be integrated in the model:

y=a,(x+x,+x)+a x +a,x,+a,x,

y

r= (au L 31) A+ (3" L3 33) X, + (an .z H_.;) Xy



If the following new parameters are introduced:

hl =a +a, hz =a,+a, a"}:{ =a, + a,

|
The model can be written as follows:

}’=QX,+I13 X2+bj %

The consequence of the constraint existing between factors is the absence of a constant
term in the model.



Second-degree models

The second-degree (or quadratic) mathematical model contains first degree terms, crossed
terms and squared terms.

Considering that there is no constant, due to the constraint between factors, the model can
be written as follows, in the case of two components:

Y=aX+a, X%+, X +3, X +a, X,

Since: X +x,=1 which can be written in terms of x;: & = 1- X,

the following equations can be easily obtained: X = X (I-X,) = x - X X

A similar equation can be written for x,?, thus square terms are, in fact, equal to a first-
degree term and a crossed term.

The model can then be writtenas: V= b. A, + bg X, + bu A X

with: q = d + a,, bz = da, + d,, bl}_' = d), - a4 - dy,

By analogy, for three components the quadratic model becomes:

Y= bl X +b¢ X, + b, x, +b|2 A X +b|3 Xlel_F-deI X, X,



Third-degree models

The complete third-degree model, also named complete cubic model, in the case of three
components can be obtained starting from the following polynomial equation:

y= b’o + b'lxl + bIQXQ + b’:;xg + b’“x% + bfggx% + b%}l.’% + b’|2 X1X2
+ b 1ax1x3 + a3 xax3 + b lzx%xz + b1 X JC% +b'y13 X%IB

’ ’ 2
+ b3 Illz:% + b33 X5x3 + b’ sz% + b’ 193 X1X2X3

’ 3 ’ 3 ’ 3
+bh xa+ b+ b
However, due to constraints existing between mixture components (e.g., X, = 1 —x, — X3), the
equation can be simplified as follows:
Y = b+ baxy + baa+ biaxix; + bisxixa + bysxoxs + graxxe (xp —xo) +
£1301X3 (X5 — X3) + Z23%0x3 (X2 — X3) + b123x1xox3

Actually, a simplified cubic mathematical model, also named special or restricted cubic
model, containing first-degree terms, crossed terms and a supplementary term
corresponding to the product of the three components is commonly adopted:

Yy=bx+b x,+b,x,+h, x x, +b; x X, +b,, X, X, + B, X, X, X,



Simplex-Lattice Designs

Based on the general requirement (experiments spaced uniformly on a (g-1)-dimensional
simplex), the number of experiments for a simplex-lattice design depends on the model
order, since for a model of order m the proportions assumed by each component are:

1 2
szon _J_n"'al
m m

For m = 1 (linear model) and g = 3 each component can only assume values 0 and 1, thus 3
experiments are required:

(0,0,1) %3
Pure components

(x;=1, x,=0, x3=0)
(x;=0, x,=1, x3=0)
(x;=0, x,=0, x3=1)

(1,0,0) (0,1,0)




For m = 2 (quadratic model) and q = 3, each component can assume values 0, 0.5 and 1, thus

6 experiments are required:

Pure components

(x;ZI, .X'_QZO, x:;:O)
(.X']:O, }.’2:1, x_;:())
(XIZO_, X_QZO_, .X':}:l)

Binary mixtures

(X]:.S_, XQ:.S_, .X'L;:.O)
(X]:.S_, XQ:.O, x3=.5)
(.X']:.O, .X'_QZ.S_, .X'g:.S)

(0.5,0,0.5) (0,0.5,0.5)

(1,0,0) (0,1,0)

X1 (0,5,0.5,0) X5




For m = 3 (cubic model) and g = 3, each component can assume values 0, 1/3, 2/3 and 1,
thus 10 experiments are required:

Pure components

(x;=1, x:70, x;70)

(x;=0, x>=1, x570) X,
(x;=0, x>=0, x;3=1)

Binary/ternary mixtures

(x~.667, x:=333, x;=.000) o
¥—0667. x—000. x;—.333

x;—.000, x,=.667,
(x;=.333, x,=.667, x3=.000) o

(x/=333, x:=000, x;=.667)
(x,=000, x,=333. x;=.667)
(x/=333, x:=333, xi~.333)




Simplex-Centroid Designs

Simplex-Centroid Designs include all possible combinations of components:
g permutations of (1, 0, O, ...,0)

g permutations of (1/2, 1/2, 0, ...., 0)

centroid (1/q, 1/q,....,1/9)

As an example, for g = 3, the combinations are:
(1,0,0); (0,1, 0); (0, 0,1)

(1/2, 1/2,0); (1/2,0,1/2); (0,1/2,1/2)
(1/3,1/3,1/3)

The total number of experimentsis (29—-1) =7




Additional experiments

Further experiments (augmented points) can be performed in a mixture design to increase
the degrees of freedom for the evaluation of lack of fit and for model significance analysis.

Typical augmented points are related to combinations placed at the centre of segments
having the simplex centre and one of its vertices as extremities:

X1

(2/3,1/6,1/6)

(1/6, 2/3,1/6)

(1/6,1/6,2/3)




Steps to complete an optimization based on mixture design

1.

2.

Definition of problem and objectives
Selection of the mixture components and relative proportions
Identification of the response

Choice of the most appropriate model to fit data and of the most appropriate design to
achieve a good fit and, at the same time, to evaluate the eventual lack of fit

Execution of experiments
Data analysis (e.g., by ANOVA)

Formulation of conclusions and recommendations.



Example of Mixture Design: formulation of a rocket propellant

The formulation of a rocket propellant, i.e., a mixture of three components: fuel, oxidizer
and binder, with the aim of achieving the most satisfactory burn rate, can be considered a
typical example of mixture design.

Considering that 10% of the propellant consists in an inert component, the main constraint
for the three components is:

fuel + oxidizer + binder = 90%

In addition, each of the three components has a lower limit:
30% < fuel

20% < oxidizer

20% < binder

Consequently, the remaining 20% of the mixture can be any combination of the three
components.

The elaboration of a Simplex-Centroid design based on the Statgraphics software is
described in the next slides.



Experiments typical of the Simplex-Centroid design for three component were integrated by
3 points (augmented design); 10 runs were thus performed.

In the figure letter P indicates primary blends, i.e., mixtures in which a specific component
is at its maximum value and the other at their minimum; B indicates binary blends and C
the centroid. Additional experiments are indicated by red points.

Components Low |High |Units fuel=50.0
fuel 30.0 |50.0 |percent
oxidizer 20.0 [40.0 [|percent
binder 20.0 [40.0 |percent

Mixture total = 90.0 percent

Responses Units
burn rate cm per second

5 further experiments, one at each vertex and 2 in the centroid, were performed for the
evaluation of pure error and for the lack of fit test.



A summary of experimental conditions and responses is reported in the following table,

whereby different types of experiments are emphasised by different colors:

Vertices (P)

Binary blends (B)

Centroid

Additional runs

Replicates

X, X, X3 response
run  |fuel oxidizer binder burn rate
(percent) |(percent) |(percent) |(cm per second)
1 50.0 20.0 20.0 32.5
2 30.0 40.0 20.0 54.5
3 30.0 20.0 40.0 64.0
4 40.0 30.0 20.0 44.0
5 40.0 20.0 30.0 63.2
6 30.0 30.0 30.0 94.0
[ [366667 266667 [266667 1125 |
8 43.3333 23.3333 23.3333 67.1
9 33.3333 33.3333 23.3333 73.0
10 ]33.3333 23.3333 33.3333 87.5
11 150.0 20.0 20.0 37.9
12 130.0 40.0 20.0 32.5
13 130.0 20.0 40.0 78.5
14 136.6667 26.6667 26.6667 98.5
15 ]36.6667 26.6667 26.6667 103.6




Notably, the mixture composition at the centroid
depends on the compositions at the vertices and at
the half points of opposite sides (i.e., at the ends of
triangle medians)

As an example, the percentages at these points for
fuel are 50 and 30%. Since the centroid is located at
2/3 of the median length, the fuel percentage at the
centroid is 50 - 2/3 x (50 -30) = 36.6667.

By analogy, the percentages of oxidizer and binder at
the centroid are:

40 - 2/3 x (40 -20) = 26.6667

Additional points are located at 1/3 of each median
length, starting from the corresponding vertex, thus
at the additional point close to the fuel vertex,
shown in the figure, fuel percentage is:

50 - 1/3 x (50 -30) = 43.3333

Oxidizer and binder have the same percentages at
that point, i.e., (90 —43.3333) / 2 =23.3333.

fuel=50.0

oxidizer=40.0

fuel=30.0

fuel=50.0

" binder=40.0

oxidizer=40.0

" binder=40.0




A special cubic model was adopted in this case:
y=bx+b x,+bx,+ B, X X, +b; XX, + by, X, X, + by X, X, X,

The coefficients for the special cubic model are summarized in the following table:

Standard T

Parameter |Estimate |Error Statistic P-Value
A:fuel 35.4946 6.07193

B:oxidizer 42.7756 6.07193

C:binder 70.3613 6.07193

AB 16.0213 38.2911 0.418408 |0.6867
AC 36.3356 38.2911 0.948931 0.3704
BC 136.821 38.2911 3.57319 0.0073
ABC 854.962 220,174 3.73063 0.0058

The model equation is:

bumn rate = 35.4946%fuel + 42.7756%oxicdhzer + 70.3613%binder + 16.0213*fuel*oxidizer +

36.3356%fuel*binder + 136.821%oxidizer*binder + 854.962*fuel*oxidizer*binder




The estimated response surface, represented as a 3D-plot together with a 2D color plot, is
reported in the following figure:

fuel = 50.0 burn rate

B 300
B 400

50.0
600

700
80.0

90.0

I 1000
B 1100

115
95
75
55
35

burn rate

oxidizer =40.0
binder =40.0




A detailed view of the 2D color plot is:

burn rate
fuel=50.0 B 30.0
B 40.0
50.0
1 60.0
B 70.0
binder=20.0 £ oxidizer=20.0 80.0
90.0
% 100.0
B 110.0
oxidizer=40.0 fuel=30.0 binder=40.0
In the table on the right the propellant [optimum value = 106.65
composition leading to the optimal burn rate,
as assessed from the model, is reported: Factor Low |High |Optimum
fuel 30.0 |50.0 |34.2503
oxidizer [20.0 |40.0 ]26.8729
binder 20.0 40.0 |28.8768




In the following table observed and fitted values, the corresponding
studentized residuals are reported:

residuals and the

Observed Firted Studentized
Row |Value Value Residual Residual
| 325 35.4946 |-2.99462 -0.451862
2 54.5 42.7756 |11.7244 2.31885
3 64.0 70.3613 |-6.36129 -1.01317
4 44.0 43.1404 |0.859581 0.307934
5 63.2 62.0119 |1.18814 0.428287
6 94.0 90.7738 ]3.2262 1.27419
7 112.5 102.23 10.2702 1.47548
8 67.1 67.9691 |-0.869131 |-0.103167
9 73.0 79.9833 |-6.98335 -0.872148
10 87.5 05.4691 |-7.96905 -1.01201
11 37.9 35.4946 |2.40538 0.361088
12 325 42.7756 |-10.2756 -1.87238
13 78.5 70.3613 |8.13871 1.36139
14 08.5 102.23 -3.72984 -0.475496
15 103.6 102.23 1.37016 0.172283

Note that studentized residuals correspond to residuals divided by an estimate of the
standard deviation.



A further Example of Mixture Design: modulating the elongation of a thread
through optimization of a mixture of three polymers

A mixture of polymers (polyethylene, polystyrene and polypropylene), used to fabricate a
synthetic fibre, was optimized to obtain the optimal elongation of the thread.

In this case the proportions of each polymer could vary from 0 to 100%, thus the study
domain was the complete equilateral triangle.

An augmented simplex-centroid design was adopted by the experimenter, with additional
points, reported in grey in the figure (points 8, 9 and 10), used as control points, i.e., to
verify the predictive power of the model:

Polyethylene (1)

Polystyrene (2) Polypropylene (3)




The obtained results were: Trial Polyethylene Polystyrene Polypropylene  Responses
(1) (2) (3)
1 1 0 0 32
2 0 1 0 25
3 0 0 1 42
4 1/2 1/2 0 38
5 1/2 0 1/2 39
6 0 1/2 1/2 30.5
7 1/3 1/3 1/3 37
8 2/3 1/6 1/6 37
9 1/6 2/3 1/6 32
10 1/6 1/6 2/3 38
The coefficients obtained for the special cubic —
model were: Coefficient Value
h 32
b, 25
b, 42
[)” 38
The model equation was, then: q 8
3
b, -12
y=32x+25x,+42x,+38x x, +8xx,-12x,x, +6 x X, X, b, 6




The comparison between observed and : )

predicted responses at control points is Trial 3::9’:'2 ::d':te:

described by the table on the right: pon pons
8 37 37.38
9 32 32.22
10 38 38.22

The contour plot resulting from the model

provided useful indications on the process:

Thread elongation independent Polyethylene

of composition 0

20% polypropylene, 30 % polystyrene 0.8 36
50% polyethylene s
0.6

38

elongation 36

0.6

High value of thread
elongation

Low value of thread 0.4 ' 38

32 '
high polystyrene % 0l \

0=
1 0.8 0.6
Polystyrene

49\
\ |
0.4 0,2 0

Polypropylene

4

high polypropylene %




Application of Minitab 18 to Mixture Design

The same dataset considered for the optimization of the polymer mixture has been applied
to show the application of Minitab 18 to Mixture Design.

The main menu for the setting of Mixture Designs in Minitab 18 can be accessed using the
Stat > DOE > Mixture > Create Mixture Design... pathway.

Create Mixture Design p4 Create Mixture Design: Simplex Centroid Design s

Type of Design

@ Simplex centroid (2 to 10 components)
(" Simplex lattice (2 to 20 components) + | Augment the design with axial points

(" Extreme vertices (2 to 10 components)

Replicate Design Points

(@ | Number of replicates for the whole design:l 1 - | l

Number of components:] 3 il Display Available Designs... " Number of replicates for the selected types of points
W pontiype | Desciption | fember |

: 1 vertex 1

Components... Process Vars... 2 double blend 1

1] center point 1

Options... Results... -1 axial point 1

Help | 0K Cancel

Help | 0K Cancel |

In this case the Simplex centroid design for 3 components is selected and the presence of

augmented data (axial points) and the absence of replicates is specified in the Designs...
window.



In the Components window the total mixture
amount (1, i.e., 100%,, in the present case) is
specified, along with lower and upper values of
components (0 and 1, respectively, in the present
case).

In the Options window the analyst can specify if
randomization of runs is required and if the design
and its parameters have to be stored in the
worksheet.

Create Mixture Design: Components >

Total Mixture Amount

(% Single total: I 1.0

(" Multiple totals (up to 5): I

Component Bounds Specified in Amount
(lower and upper are for the first total, if you specified more than one)

Component Name: (" Lower Upper 1
A A a 1
B B a 1
C C \ a 1

Linear Constraints. .. |

Help | oK | Cancel |

Create Mixture Design: Options X

[~ Randomize runs

Base for random data generataor: I

[w Store design in worksheet

[w Store design parameters in worksheet

Help | oK I Cancel




As a consequence, all settings for runs to be performed (10 runs in this case) are
automatically reported in the Worksheet:

%Wbrksheeﬂ Rk
. C1 C2 3 c4 C5 Cé c7 C8 co C10 C11
StdOrder RunOrder| PtType  Blocks A B C Totals @ Lower @ Upper Responses
1 1 1 1 1 1.00000 0.00000 0.00000 1 0 1 32.0
2 2 2 1 1 0.00000 1.00000 0.00000 0 1 25.0
3 3 3 1 1 0.00000 0.00000 1.00000 0 1 42.0
4 4 4 2 1 0.50000 0.50000 0.00000 38.0
5 5 5 2 1 0.50000 0.00000 0.50000 39.0
6 6 6 2 1 0.00000 0.50000 0.50000 30.5
7 7 7 0 1 033333 033333 0.33333 37.0
8 8 8 -1 1 0.66667 0.16667 0.16667 37.0
9 9 9 -1 1 0.16667 0.66667 0.16667 32.0
10 10 10 -1 1 0.16667 0.16667 0.66667 38.0
Note that numbers reported in the PtType (Point Type) Point Type | Description | Number
column correspond to those shown in the table reported Y e Hiend ;
inside the Create Mixture Design: Simplex Centroid Design 0 center point 1
window shown before. 2 il i -

Once experiments have been made, responses can be entered in the appropriate column of
the worksheet and then model calculations can be started by accessing the
Stat > DOE > Mixture > Analyze Mixture Design... pathway.



In the specific case, components are analysed in proportions (their percentages), not as
pseudocomponents.

The type of model, a special cubic one, in the present case, can be specified in the Terms...
window:

Analyze Mixture Design > ] ]
Analyze Mixture Design: Terms >
R 3
€11 Responses espanses Include component terms for model: |Special Cubic LI
R
esponses [~ Include inverse compaonent terms
Available Terms: Selected Terms:
L
(& Mixture components only ACA—C] B:B
(" Mixture components and process variables BC(B-C) > | c:c
(" Mixture amount experiment AABC AB
ABBC AC
PR i ABCC - | BC
nalyze Components in AB(A-B)sq ABC
® Proportions AC(A-C)sq “ |
" Pseudocomponents BC(B-C)sq
Select (1/A)
4' tti i (1/8) i|
Model Fitting Method: |[RR IRt T
= (1/C)
Prediction... |
l Graphs... ' [ Results... I Storage... | [ Include blacks in the model
Help | oK I Cancel | Help | oK I Cancel |

Different types of Graphs and Results to be shown at the end of calculations can be selected
in the corresponding windows.




A table incIuding all regression Estimated Regression Coefficients for Responses (component proportions)

CoefﬂCientS and the ANOVA table Term Coef SECoef T-Value P-Value WVIF
: A 31945  0.207 * * 197

can be included among the S odeor oaor . . o
Results and are shown in the C 41991  0.207 * * 197
: : A'B 37.87 104 3633 0000 238
Sessmn.wmdow at the end of e v o oL e aum
calculations. B*C -12.04 104  -1155 0001 238
[2B*C 159 6.87 023 0832 247)

Notably, a slight discrepancy with
results shown before can be Analysis of Variance for Responses (component proportions)

observed for the coefficient Source DF SeqsS5 Adj55s AdjMS F-Value P-Value
related to the A*B*C product in Regression 6 220087 229.087 381812 83183  0.000
h : del Linear 2 145528 160702 803508 1750.55  0.000
the regression model. Quadratic 3 83557 76212 254041 55346  0.000
A'B 1 73068 60571 605707 131962  0.000
Actually, as shown by SE A*C 1 3274 2617 26168 5701  0.005
- B*C 1 7215 6119 61193 13332 0.001
CoeffICIen.t and by the P-Value, Special Cubic 1 0002 0.002  0.0025 0.05 0832
much higher than 0.05, the A*B*C 1 0002 0002 00025 005 0832
contribution of that term to the Residual Error 3 0138 0.138  0.0459
model is not  statistically Total 7 229225
significant.

Not surprisingly, the same outcome can be inferred from the ANOVA table.

Note also that Variance Inflation Factors (VIF) were all higher than 1. This is reasonable, in a
model based on mixture design, since a correlation is expected between variables in this
case.



As a last step, contour and/or surface plots resulting from the calculations can be displayed
by accessing the Stat > DOE > Mixture > Contour/Surface Plots... pathway.

Different graphical settings can be selected from the Setup... windows referred to the two
types of plots. The one referred to the ContourPlot is reported as an example:

ContourPlot: Contour X

e
|7 Contour plot Setup... Components or Process Variables

(® Select a triplet of components for a single plot

[+ Surface plot Setup... X-Aois: [A:A ~] v-axis: [p:8 | zoaxs: [cc |

(" Select four components for & matrix plot

| =0 | E28 =l =]
HE.‘||'J | oK Cancel (" Generate plots for all triplets of components
(8 In separate panels of the same graph
(" On separate graphs
(" Select a pair of numeric process variables for a single plot

Contour/Surface Plots e

H-pis I b I AR I bl |
(" Generate plots for all pairs of numeric process varisbles

(8 In separate panels of the same graph

(" On separate graphs

Model Fitted in Component Unit in Plot(s) [ Plot all level combinations
(& Proportions (® Amount [ Plat all migture amaunts
(" Pseudocomponents (" Proportion

(" Pseudocomponent

Contours... | Settings... | Options... |

Help | 0K I Cancel |




As apparent, the resulting contour plot is virtually identical to the one reported before:

Mixture Contour Plot of Responses
(component amounts)

A
1

Responses
< 250

W 250 - 275
M 275 - 300

30.0 - 325
325 - 35.0
350 - 375
37.5 - 40.0

= 40.0

Polyethylene

¢ T t
1 0.8 0.6 0.4 0,2 0

Polyst
e s Polypropylene

Mixture Surface Plot of Responses
(component amounts)

1.00

The surface plot (that can be rotated in any
direction) provides 7 more direct
representation of the variation of response with
the polymer mixture composition, emphasizing
the increase in response related to the increase
in the percentage of polypropylene (component
C).




	Diapositiva numero 1
	Diapositiva numero 2
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Diapositiva numero 13
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21
	Diapositiva numero 22
	Diapositiva numero 23
	Diapositiva numero 24
	Diapositiva numero 25
	Diapositiva numero 26
	Diapositiva numero 27
	Diapositiva numero 28
	Diapositiva numero 29
	Diapositiva numero 30
	Diapositiva numero 31
	Diapositiva numero 32
	Diapositiva numero 33

