
Multivariate methods

Multivariate methods are used to find relationships between sample responses
(observations) and variables (properties/features).

A general classification of multivariate methods can be described as follows:

Multivariate methods

Unsupervised
methods

Supervised
methods

Multivariate 
modelling

 Principal Component
Analysis (PCA)

 Cluster Analysis (CA)

 Linear Discriminant
Analysis (LDA)

 Linear Learning Machine 
(LLM)

 Soft Independent 
Modelling of Class 
Analogies (SIMCA)

 Ordinary Least Squares
(OLS) Multiple
Regression

 Principal Component 
Regression (PCR)

 Partial Least Squares 
(PLS) Regression



Multivariate data can be obtained in several contexts, including design and synthesis of
materials and analysis based on complex methods:



A simple example of a multivariate data set is described in the following table, reporting the
concentrations (expressed as ppm) of Cu, Mn, Cl, Br and I in 9 hair samples:

Hair No.

1
2
3
4
5
6
7
8
9

properties / features / variables

samples / 

objects /

observations



In general terms a multivariate data table can be represented as follows:

1 2 ….. j ….. p
1 x11 x12 …. x1j …. x1p
2 x21 x22 …. x2j …. x2p
. . . . . . .
. . . . . . .
i xi1 xi2 …. xij …. xip
. . . . . . .
. . . . . . .
n xn1 xn2 …. xnj …. xnp

Variables (features)
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Data matrix X will have n rows, corresponding to samples (objects), and p columns,
corresponding to variables (features), thus it will be a n × p matrix.

This configuration is called R-mode; in this case covariance (S) and correlation (R) matrices
are both p × p matrices.

An alternative configuration, called Q-mode, has samples in columns and variables in rows,
thus a transposed matrix XT (p × n) is obtained and S and R matrices are both n × n matrices.



Matrix X can be represented as a set of n points in a p-dimensional space.
The corresponding centroid is represented by the row vector of means:

where

Vector components are thus the means of values included in each column of matrix X.

In matricial notation the row vector of means can be expressed as:

where vector 1T is a (1 × n) row vector whose terms are all equal to 1:

X1x TT 1−= n
(1×p)              (1×n) (n×p) 

x11 x12 …. x1j …. x1p
x21 x22 …. x2j …. x2p
. . . . . .

xi1 xi2 …. xij …. xip
. . . . . .

xn1 xn2 …. xnj …. xnp

[1, 1, ……, 1]



Covariance matrix S

Covariance matrix S describes the dispersion of data in the p-dimensional space:

S =

σ2
1 cov (x1,x2) … … cov (x1,xp)

cov (x2,x1) σ2
2 . . .

. . . . .

. . . . .
cov (xp,x1) … … … σ2

p

In particular, S is a symmetric matrix of rank p (p × p) in which the main diagonal includes
variances of variables, whereas other terms correspond to covariances between variables.



Correlation matrix R

Correlation matrix R includes linear correlation coefficients between variables:

R=

Diagonal values are all equal to 1, since they correspond to correlation coefficients of each
variable with itself.

The generic element rhk corresponds to:

with -1 ≤ rhk ≤ +1

Notably, R corresponds to the covariance matrix of standardized data:
jj

jij

s
xx −



Principal Component Analysis

Principal Component Analysis (PCA), that is currently one of the most used techniques of
multivariate analysis, was proposed by Karl Pearson in 1901 and then developed in its current
form by the American statistician Harold Hotelling in 1933.

As a first application, PCA is used to simplify original data, basically by reducing the number
of physically measured variables, eventually correlated, into new latent variables, called
principal components, that are not correlated (i.e., they are orthogonal), can be easily
interpreted and are able to synthesize the information embedded in the original data.

Principal components (PC) are linear combinations of the original variables.

Given a column vector xi, whose terms are values observed for the p variables in the i-th
sample (i.e., values reported in the i-th row of the X matrix), the value of the k-th principal
component for the i-th sample, zik or PCik, can be generally expressed as:

where:

[ ]kpkk ,.....,α,αα 21=T
kα



The mean of values assumed by the k-th principal component for the n samples can thus be
calculated as follows:

Using matricial notation, this mean can be expressed as:

Where 1T is a row vector including n times the number 1 and zk is a column vector whose
components are represented by zik values, i.e., values assumed by the k-th principal
component for each sample. This vector can be thus represented as follows:

z1k
z2k
.

zik
.

znk

zk =



An alternative expression can be used for the average value of the k-th principal component:

where is a column vector whose components correspond to means of variable values
obtained for different samples:

=



The variance of the k-th principal component can thus be calculated as follows:



According to the PCA principle, the first principal component, indicated as z1, is the one
whose variance is maximum:

under the constrain

In other words, the norm of vector α1 is equal to 1.

It is worth noting that once a vector α1 able to maximize z1 variance is found, this variance
could be further increased using an alternative vector cα1, with c > 1. Infinite possible
solutions would thus be found if the constrain described before was not adopted.

The maximum value for var zi under the described constrain can be found using the method
of Lagrange multipliers, i.e., by maximizing the objective function:

where λ is the Lagrange multiplier.

The derivative of L with respect to vector αi
T has to be equalized to 0:

L = αi
TSαi - λ(αi

Tαi - 1)



According to the rules for vectorial derivation the previous equation can be written as:

Vectors α1 solving the equation are called eigenvectors of matrix S, whereas the
corresponding λi values are called eingevalues.

If the first eigenvector and eigenvalue are introduced in the equation, the following
equations can be obtained:

Since corresponds to Var(z1), the first eigenvalue, λ1, is also the variance of

the first principal component.

2Sαi - 2λαi = 0 Sαi - λαi = 0

Sα1 - λ1α1 = 0 Sα1 =  λ1α1 αT
1S α1 = αT

1 λ1 α1 = λ 1

αT
1 S α1



Once the first principal component is obtained, a second component z2 = α2
Tx,

not correlated with z1, is calculated to account for most of the remaining variance of data.

A new eingevector, α2, is thus obtained, respecting the constrains α2
Tα2 = 1 and α2

Tα1 = 0.

The new objective function now contains two Lagrange multipliers, λ and φ:

When the derivative of L with respect to vector α2
T is calculated and equalized to 0, the

equation solution is the eigenvector α2 with the corresponding eigenvalue, λ2.

The procedure is repeated until the total variance of matrix X is accounted for by the
eingevalues:

Principal components resulting from the procedure are usually ordered in terms of
decreasing variance and the reduction of complexity occurs by limiting the analysis to the
most important components in terms of variance.

=∑
=

P

K
K

1
λ total variance of X

L = α2
TSα2 - λ(α2

Tα2 - 1) – φ (α2
Tα1 - 0) 



Data projection in Principal Component Analysis

Generally speaking, the product between a matrix X(n × p) and a vector v(p × 1), vector s = X v,
can be interpreted, geometrically, as the projection of a set of n points in a p-dimensional
space (points whose co-ordinates are the terms of rows in the X matrix) on an axis defined by
vector v.

In a more general case, the n points defined by matrix X can be projected in a k-dimensional
space, T(n,k), defined by k new axes, each represented by a column of the P(p × k) matrix,
according to the matricial equation:

T is called score matrix, since points represented by matrix T in the new space are called
scores.

P is called loadings (or eigenvectors) matrix.

If X represents the matrix of input data for PCA, T corresponds to a matrix reporting in each
row the values of principal components for the n samples and P is a matrix reporting in each
column the coefficients that need to be multiplied by the p original variables to obtain
principal components. Note that k, the number of principal components, was equal to p in
calculations shown before, yet PCA can also be performed by choosing k < p.

T   =    X   P 
(n × k)  =  (n × p) (p × k)



Loading matrix P can be obtained from the covariance matrix S of original data through an
operation called diagonalization:

In this equation matrix Λ is a diagonal matrix, i.e., it has values different from 0 only along its
main diagonal. Importantly, diagonal terms of matrix Λ correspond to eigenvalues, λ1, λ2,…, λp,
ordered in decreasing order.

As explained before, each column in matrix P correspond to a different principal component
and each row to a different original variable:

The generic term αjk of the matrix represent the loading of variable Xj in principal component
PCk, i.e., the coefficient referred to that variable in the calculation of the principal component.

S  = PΛ PT

PC1 ....   PCk .....   PCp

X1

Xj

Xp

αjk

α11

αj1

αp1

α1k

αpk

α1p

αjp

αpp

…. ….
…. …. …. …. ….

…. ….
…. …. …. …. ….

…. ….



It is worth noting that loadings αjk are standardized linear coefficients, i.e., the sum of their
squares is equal to 1:

A loading αjk with an absolute value close to 1 indicates that the k-th principal component is
represented mainly by the j-th original variable.

On the other hand, a value close to 0 indicates that the variable is almost not represented at
all in the principal component.

It is worth noting that eigenvalues assuming very low values are reasonably related to
variability due to noise or to non relevant information. In this case the corresponding
principal components can be eliminated.

When the number of principal components, k, is equal to that of the original variables, p, the
projection discussed so far coincides with a simple rotation, thus P is called rotation matrix.

In this case all the information initially contained in matrix X is kept.

-1 ≤ αjk ≤ +1 Σj αjk
2 = 1



Geometric interpretation of principal components

As already discussed, principal components individuate a new co-ordinates system, so that
the maximum variance, corresponding to PC1, is located on the first axis, and progressively
lower variances are located on other axes.

The new co-ordinates, called scores, are the result of linear combinations in which original
variables (usually centered or autoscaled) are combined according to loadings.

As an example, the score of the i-th sample for the k-th principal component is:

In vectorial terms:

where both αk and xi are vectors of length p.

∑
=

=
p

j
ijjkik xt

1
α

tik = αk
T xi



Once principal components have been calculated, the inverse procedure enables the
reproduction of the original matrix of data, X, as the product of matrix T and of the
transposed version of matrix P:

This equation can be easily demostrated:

A graphical representation
of the operation is shown in
the figure on the right:

TPTX =ˆ

T = X P                T PT = X P PT                       T PT = X

p

n

T (scores) PT (loadings)

n

k p

k

TPTX =ˆ



The change in the representation of multivariate data can be easily visualized for bivariate
data.
First, the centroid is calculated for original data and is subsequently adopted as the origin of
the new reference system (a procedure known as centroidation or mean centering):



A rotation of axes, aimed at finding the direction
characterized by maximum variance, is performed
afterwards:

After rotation new co-ordinates are defined for
each point with respect to rotated axes.

The optimal rotation is the one able to minimize
the sum of squared distances between each point
and its projection of the Y1 axis:

Pj

Pj’

Y1

O

Y2

O = centroid



The following equations can be written:

It is worth noting that the choice of axis Y1 must be able to minimize the second term in the
right member of the last equation but, as a consequence, it leads to maximize the first term
in the same member.
As a simple graphical demonstration, if the light blue Y1 axis shown in the figure is
considered as an alternative to the purple Y1 axis, the distance between Pj and the new Pj’
projection (the light blue one) is lowered and the distance between the centroid and the
new Pj’ point is increased.

Notably, the term in the last equation including OPj’ distances corresponds to the variance of
projections of points on the Y1 axis, thus explaining the formulation of the determination of
principal components provided by Hotelling.

Pj

Pj’

Y1

O

Y2

O = centroid

Y1

Pj’



Main steps of PCA

Based on the considerations made so far, the main steps of Principal Component Analysis
are:

1) pretreatment of data matrix X(n×p) through centroidation or autoscaling, i.e.,
centroidation followed by division by standard deviation;

2) calculation of covariance matrix (corresponding to the correlation matrix, if autoscaling
of variables is performed preliminarily);

3) calculation of eigenvectors and eigenvalues of the covariance (or correlation) matrix;

4) calculation of the score matrix;

5) graphical representations (scores plot and loadings plot).

It is worth noting that the use of correlation matrix can be preferred when variables are
expressed with different units and/or when they are characterized by quite different
variances.

In the latter case principal components based on covariance matrix would emphasize
variables having a large variance.



A numerical example of PCA: bivariate data

Let us consider the table on the right,
reporting two properties (X1 and X2) for 20
chemical elements:

A graphical representation of data can be
easily obtained:



Centroidation of data can be also
represented graphically:

2,1 1,25
0,9 1,61

1,45 1,08
1,9 0,795

2,37 0,64
2,85 0,54
3,32 0,465
3,78 0,405
0,89 2,65
1,31 2,03
1,64 1,675
1,98 1,42
2,32 1,24
2,65 1,1
2,98 1,01

0,8 3,69
1,17 3

1,5 2,75
1,86 2,58
2,22 2,43

X(n,p)
0,1005 -0,368

-1,0995 -0,008
-0,5495 -0,538
-0,0995 -0,823
0,3705 -0,978
0,8505 -1,078
1,3205 -1,153
1,7805 -1,213

-1,1095 1,032
-0,6895 0,412
-0,3595 0,057
-0,0195 -0,198
0,3205 -0,378
0,6505 -0,518
0,9805 -0,608

-1,1995 2,072
-0,8295 1,382
-0,4995 1,132
-0,1395 0,962
0,2205 0,812

Xc(n,p)



The covariance matrix S is the following:

Eingenvalues and eigenvectors can be obtained using the equation shown before:

where P is an orthonormal matrix and Λ is a diagonal matrix.

Introducing numbers, the equation can be expressed as:

The two eigenvalues are: λ1 = 1.3978 and λ2 = 0.1928.

From a graphical point of view eigenvectors provide the
orientation of the main axes of the covariance ellipse,
whereas eigenvalues provide the length of axes:

0.6881 -0.5929
-0.5929 0.9026

S = PΛ PT

0.6881 -0.5929
-0.5929 0.9026 = 0.64108 -0.76747

-0.76747 0.64108
1.397805 0

0 0.192835
0.64108 -0.76747

-0.76747 0.64108

λ1

λ2



0.6881 -0.5929
-0.5929 0.9026

It is worth noting that the trace of the covariance matrix S, i.e., the
sum of elements along the main diagonal, correspond to the total
variance of the original data, i.e., 1.5907.

Variable X1 contributes to this variance for 0.6881/1.5907 = 43.26%

Variable X2 contributes to this variance for 0.9026/1.5907 = 56.74%

If the diagonal matrix Λ is considered, its trace corresponds to the
total variance explained by principal components and is equal to
1.5906, thus identical (apart from rounding effects) to that of the
original data. This is reasonable, since the numbers of original
variables and of principal components are the same in this case.

Notably, PC1 and PC2 contribute for 1.3978/1.5906 = 87.88 % and for
0.1928/1.5906 = 12.12 %, respectively.

1.3978 0
0 0.1928

It is thus apparent that the transformation of original variables into principal components
has led to a different distribution of explained variance, increasing remarkably the one
explained by the first component with respect to the one explained by the first original
variable.

S

Λ



The matrix of scores, T, can be obtained from the Xc and the P ones: T = Xc P
PC1 PC2

0,3469 -0,31305
-0,6987 0,84897
0,0606 0,76663
0,5678 0,60397
0,9881 0,34263
1,3726 0,03835
1,7314 -0,2743
2,0724 -0,5889

-1,5033 0,18992
-0,7582 0,26505
-0,2742 0,23936
0,1395 0,1419
0,4956 -0,0036
0,8146 -0,1672
1,0952 -0,3627

-2,3592 -0,4077
-1,5924 -0,2494

-1,189 -0,3424
-0,8277 -0,5097
-0,4818 -0,6898

0,1005 -0,368
-1,0995 -0,008
-0,5495 -0,538
-0,0995 -0,823
0,3705 -0,978
0,8505 -1,078
1,3205 -1,153
1,7805 -1,213

-1,1095 1,032
-0,6895 0,412
-0,3595 0,057
-0,0195 -0,198
0,3205 -0,378
0,6505 -0,518
0,9805 -0,608

-1,1995 2,072
-0,8295 1,382
-0,4995 1,132
-0,1395 0,962
0,2205 0,812

= 0.64108 -0.76747
-0.76747 0.64108

T Xc

P

As an example, for the first sample the PC1 score is: 0.1005 * 0.64108 - 0.368*(-0.76747) =
0.3469; the PC2 score is: 0.1005 *(-0.76747) - 0.368 * 0.64108 = -0.31305



Each row of matrix T reports the co-ordinates that each sample will have in the reference
system based on the two principal components. Its graphical representation, reported
above, is usually called Score plot.
It is worth noting that a symmetrical plot with respect to the origin of axes is equivalent to
the one shown above. This feature is called mirror effect of PCA.



Loadings plot
As explained before, in PCA loadings represent the contribution of each original variable to a
specific principal component. Their graphical representation, usually called loadings plot,
can be very informative.

As an example, the plot shown above indicates that variables 1, 2 and 3 have a remarkable
(and negative) contribution fo PC1, whereas variables 4 and 5 contribute to PC2.

Generally speaking, variables whose points are close to the origin of the loading plot are not
relevant for any PC, whereas variables whose points are close to each other are correlated,
i.e., they provide a similar information.



Plots including both scores and loadings, called bi-plots, can be reproduced after the
processing of data based on PCA.

In the following example the scores referred to several samples and the loadings referred to
10 variables, corresponding to the concentrations of different elements, are reported in a bi-
plot:

Note that the contribution of each principal component to the total variance is indicated in
the axes names.



Choice of the number of principal components

Different criteria can be adopted to select the optimal number of principal components.

1) Predetermined value of the explained variance

According to this approach, the k principal components that explain a cumulative
variance of 80-90% can be retained:

2) Mean eigenvalue

The k principal components whose eigenvalues are greater than the mean eigenvalue
are retained:

Note that if variables are autoscaled (i.e., the correlation matrix is used for
diagonalization) the mean value of eigenvalues is 1. Since the choice of components
with eigenvalues greater than 1 is too severe, a threshold of 0.7 is sometimes adopted.
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3) Scree plot

The scree plot reports the percentages
of variance explained by each principal
component.

In the figure on the right cumulative
percentages have been also added.

This graphical representation helps the
user in choosing which principal
component should be considered as
the last useful one.
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Correlation between principal components and original variables

The degree of correlation existing between the i-th PC, zi, and the j-th original variable, Xj, is
provided by the following correlation coefficient:

where αij is the loading of Xj on zi.

As expected, variables contributing to a PC with a relevant loading (in absolute value) will
determine the meaning of that PC.
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A graphical representation known as correlation
circle enables an easy evaluation of correlations.

Indeed, the circle is drawn with unitary radius in a
plot in which each variable corresponds to a point
whose co-ordinates are the correlation coefficients
between the variable and the principal components
on the two axes.

The more a point is close to the circle, the greater is
its correlation with the two PCs.



Conceptual considerations on PCA

Due to the approach adopted for the calculation, each principal component represents
variations in data due to different intrinsic properties, thus PCs represent macroproperties
of the system under study, not directly measurable.

PCA enables the recognition of emerging properties of the system, that can be related to
synergic or antagonistic effects of the original variables.

As en example, if some chemical compounds are described contemporarily by a certain
number of descriptors (molecular weight, molar volume, etc.) a specific PC in which each of
these descriptors is remarkably represented is expected.

This PC becomes a new «macrovariable», whose meaning goes beyond that of the single
original variables.

Whether this information is interpreted or not, it represents a new synthetic description of
the system under study.

Moreover, not relevant variations or the one caused by experimental noise are not
represented in a principal component.



A further numerical example of PCA: data referred to five variables

Let us re-consider the following data matrix, representing the concentrations (ppm) of five
elements in nine hair samples:

A first inspection of variable values and of means and standard deviations indicates that Cl
concentrations are quite different in the nine samples. In this case, the autoscaling of data,
i.e., the use of correlation matrix, is highly recommended.

X: original data matrix

means
standard deviations



Xc : centered matrix of data

The mean referred to each column is
subtracted from all the values of the same
column in the original matrix of data, thus
obtaining the centered matrix of data:

Values obtained in each column are divided by
the standard deviation referred to that column
in the original data, thus obtaining the
autoscaled matrix of data:

Xa : autoscaled matrix of data

1. Centroidation and autoscaling of data



The second step is the calculation of the covariance matrix for autoscaled data, that is
actually equivalent to the correlation matrix of original data:

Cu
Cu

Mn

Mn

Cl

Cl

Br

Br

I

I

2. Calculation of Correlation Matrix, R, of original data



3. Calculation of eigenvalues and eigenvectors

Calculation of eigenvalues and eigenvectors is based on the matricial equation:

The resulting diagonal matrix Λ, including eigenvalues, is the following:

It is worth noting that when correlation matrix is used the trace of matrix Λ, i.e., the sum of
eigenvalues, is equal to the number of variables p:

R  = P Λ PT

3.38763 0 0 0 0
0 1.1338982 0 0 0
0 0 0.301181 0 0
0 0 0 0.132766 0
0 0 0 0 0.044528

Λ =

explained variances
3.38763 /5 = 67.75%
1.13390 /5 = 22.68%
0.30118 /5 = 6.03%
0.13277 /5 = 2.66%
0.04453 /5 = 0.89%



The scree plot referred to the five eigenvalues is the following:
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Considering both the criteria described before for the selection of principal components
based on eigenvalues, i.e., being greater than 1 or 0.7, the number of components to be
retained is 2.



The matrix of eigenvectors (loadings) P is the following:

Consequently, principal components can be expressed as:

PC1 = - 0.51702 Cu - 0.46356 Mn + 0.51498 Cl + 0.29802 Br + 0.404696 I
PC2 = 0.085173 Cu - 0.2639 Mn - 0.1714 Cl - 0.7493 Br + 0.576401 I
PC3 = - 0.43994 Cu + 0.76432 Mn + 0.33715 Cl - 0.3097 Br + 0.112508 I
PC4 = 0.219454 Cu +  0.35761 Mn - 0.2954 Cl + 0.50205 Br + 0.696161 I
PC5 = - 0.6955 Cu -0.05835 Mn - 0.7103 Cl + 0.04104 Br - 0.08176 I



4. Calculation of scores matrix

The matrix of scores T can be obtained from the equation T = Xa P:



The consequent scores plot for the first two principal components is the following:
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Three different clusters of samples can be observed in the score plot.



The loadings plot for the first two principal components is the following:

The plot indicates that samples 3, 6 and 7
share relatively high Cl and Br
concentrations, whereas samples 2, 5
and 8 are particularly rich in Mn and Cu
and samples 4 and 9 are rich in I.

This outcome can be inferred from the
original dataset (but only because
variables are in a limited number).
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The correlation circle is obtained using formulas described before:
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Cu

Mn

I

Cl

Br

In this case Cu, Mn and Cl are remarkably correlated with PC1 (the first two elements
negatively, the third positively).
Intermediate correlation coefficients towards both principal components are observed for I
and Br.



A further numerical example of PCA: data referred to 18 variables

38 wine samples were subjected to the analysis of 17 trace elements and the following
data matrix was obtained, including an evaluation of aroma as the 18-th variable:

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………



The following results and scree plot were obtained from PCA:

E.V.%: percentage of explained variance
C.E.V.% : percentage of cumulative explained variance



Loadings for the first 6 principal components, those having eigenvalues greater than 1, are
reported in the following table:

As apparent, elements contributing more to PC1 are all alkaline or alkaline-earth ones,
whereas Mo, Pb and Ca are those giving the greatest contribute to PC2.



As apparent from the loadings plot, elements contributing most to PC1 (negatively) are all
alkaline or alkaline-earth ones, whereas Mo, Pb and Ca are those having the greatest
(negative) contribution to PC2:



The score plot referred to the first two principal components enables a comparison between
samples:

Samples 12, 20 and 24 are isolated on the upper-left zone of the score plot, likely because of
the high content in one or more alkaline or alkaline-earth elements.

On the other hand, sample 7 is isolated in the lower zone of the plot, likely due to the
presence of Mo and Pb in high concentration.



Another interesting plot that can be generated after PCA calculations is the one reporting
scores obtained for all samples in all principal components (corresponding to «columns»):

This plot emphasizes the decrease in variance occurring progressively from the first to the
last principal component, as expected.

Actually, the variance of some components is still relatively high for the presence of samples
whose behavior is anomalous.



Use of Minitab 18 for Principal Components Analysis

PCA can be performed by Minitab 18 by considering the Stat > Multivariate > Principal
Components… pathway.



Note that a further text column (C2-T) can be used to report classification codes that can be
useful to recognize samples on the score plot.

The original dataset is preliminarily transferred into the Minitab worksheet using rows for
samples and columns for variables, as shown in this example, where samples are represented
by mussel lipid extracts (labelled according to names reported in column C1-T) and variables
correspond to free fatty acids detected by LC-MS in those extracts:



Inside the Principal Components Analysis window variables to be considered for calculations
are selected, then the number of components to be computed is set (it can be lower than
the total number of variables). Last but not least, the choice of data matrix, correlation or
covariance, implying the centroidation or autoscaling of data, respectively, is indicated.

Several types of graphical representations can be selected in the Graphs… window. Minitab
18 is able to reproduce only the score and the loading plots for the first two components.

In any case, the storage of scores obtained for further principal components into additional
columns of the worksheet can be selected in the Storage… window.



Once the calculation is completed, several types of information are included in the Session
window. First, eigenvalues and the fraction of variance explained by each principal
component (in the present case 27 principal components were calculated), along with
cumulative values, are reported:

Note that the first six components were able to account for more than the 80% of total
variance in this case.



Eigenvectors, i.e., loadings of variables on principal components, are also reported.
In the following figure only those relevant to the first 8 principal components are shown:



Score, loadings and scree plots can be easily generated by the program. In the following
figure, the score plot, indicating a clear clustering of mussel samples with a different
thermal history, is reported:

Glazed
mussels
from Chile

Mussels
kept at 4 °C 
for 4 days

Mussels kept at
-16 °C for 7 days

Special treatments

I. Losito et al., Food Chemistry, 255 (2018) 309-322

Fresh/refrigerated
for 48 h mussels



The loading plot emphazises which variables are responsible for the distinction of sample
clusters.

I. Losito et al., Food Chemistry, 255 (2018) 309-322



Another example of Principal Components Analysis

Three-dimensional score plot
obtained for 100 salmon samples
fished in different countries, based
on the abundance of 30 different
fatty acids in the fish meat
(determined by mass
spectrometry):

Farmed – Canada
Farmed – Norway
Farmed – Chile
Wild – Canada

As apparent, wild Canadian
salmon samples could be clearly
distinguished from all farmed
salmon samples, apart from their
geographical origin.

G.M. Fiorino, I. Losito et al., Food Research International, 116 (2019) 1258 - 1265



The loading plot referred to the first two principal components, with variables labelled with
the conventional names for fatty acids (C:D, with C = number of carbon atoms, D = number
of C=C bonds) provided some explanations for the difference observed between wild and
farmed salmons:

18:1

18:2

18:0

wild farmed

20:2

20:3

oxidized
fatty
acids

20:5 (EPA)

22:522:6
(DHA)

20:4 18:4

Wild salmons contained higher concentrations of long and highly unsaturated fatty acids,
including omega-3 ones (like 20:5 and 22:6), whereas fatty acids like 18:1, 18:2 and 18:3,
resulting from feeding based on vegetal oils, were more relevant in farmed salmons.
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