Multivariate methods

Multivariate methods are used to find relationships between sample responses
(observations) and variables (properties/features).

A general classification of multivariate methods can be described as follows:

Multivariate methods
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Multivariate data can be obtained in several contexts, including design and synthesis of
materials and analysis based on complex methods:
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A simple example of a multivariate data set is described in the following table, reporting the
concentrations (expressed as ppm) of Cu, Mn, Cl, Br and | in 9 hair samples:

properties / features / variables
—

Hair No. Cu Mn Cl Br |

9.2 0.3 1730 12 3.6
12.4 0.39 930 50 2.3
samples / 7.2 0.32 2750 65.3 3.4
10.2 0.36 1500 3.4 5.3
objects / 10.1 0.5 1040 30.2 1.9

6.5 0.2 2490 90 4.6
5.6 0.29 2940 88 5.6
11.8 0.42 867 43.1 1.5
8.5 0.25 1620 5.2 6.2
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In general terms a multivariate data table can be represented as follows:

Variables (features)
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Data matrix X will have n rows, corresponding to samples (objects), and p columns,
corresponding to variables (features), thus it will be a n X p matrix.

This configuration is called R-mode; in this case covariance (S) and correlation (R) matrices
are both p X p matrices.

An alternative configuration, called Q-mode, has samples in columns and variables in rows,
thus a transposed matrix X™ (p X n) is obtained and S and R matrices are both n x n matrices.



Matrix X can be represented as a set of n points in a p-dimensional space.
The corresponding centroid is represented by the row vector of means:
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Vector components are thus the means of values included in each column of matrix X.

-

In matricial notation the row vector of means can be expressed as:

X' =n"1'X
(1xp) (1xn) (nxp)

where vector 17is a (1 X n) row vector whose terms are all equal to 1:
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Covariance matrix S

Covariance matrix S describes the dispersion of data in the p-dimensional space:

o2, COV (X,X)) .. .. €OV (X},X)
cov (X,,X,) o2,
S =
cov (X,X)) o2,

In particular, S is a symmetric matrix of rank p (p * p) in which the main diagonal includes
variances of variables, whereas other terms correspond to covariances between variables.



Correlation matrix R

Correlation matrix R includes linear correlation coefficients between variables:

1 I F1p
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Diagonal values are all equal to 1, since they correspond to correlation coefficients of each
variable with itself.

The generic element r,, corresponds to:
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Notably, R corresponds to the covariance matrix of standardized data:
S
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Principal Component Analysis

Principal Component Analysis (PCA), that is currently one of the most used techniques of
multivariate analysis, was proposed by Karl Pearson in 1901 and then developed in its current
form by the American statistician Harold Hotelling in 1933.

As a first application, PCA is used to simplify original data, basically by reducing the number
of physically measured variables, eventually correlated, into new latent variables, called
principal components, that are not correlated (i.e., they are orthogonal), can be easily
interpreted and are able to synthesize the information embedded in the original data.
Principal components (PC) are linear combinations of the original variables.

Given a column vector x;,, whose terms are values observed for the p variables in the i-th

sample (i.e., values reported in the i-th row of the X matrix), the value of the k-th principal
component for the i-th sample, z, or PC,, can be generally expressed as:

T
ka:akxi:aklle—l—(szxﬂ+ ..... +(I@x. :Zaij_

where:



The mean of values assumed by the k-th principal component for the n samples can thus be
calculated as follows:

Zy 12 122%1‘

=1 j=1
Using matricial notation, this mean can be expressed as:

= _ ..—19qT

z,=n 11z,

Where 17 is a row vector including n times the number 1 and z, is a column vector whose
components are represented by z, values, i.e., values assumed by the k-th principal

component for each sample. This vector can be thus represented as follows:




An alternative expression can be used for the average value of the k-th principal component:

Zy :1 Z - ZZ‘% Zaﬁgz = ;X

=1 j=1

where X s a column vector whose components correspond to means of variable values
obtained for different samples:
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The variance of the k-th principal component can thus be calculated as follows:

Var (z,) = — > (zi -z ) =
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According to the PCA principle, the first principal component, indicated as z,, is the one
whose variance is maximum:

T
var z; = ¢, 50, = max

under the constrain 1111111 =1

In other words, the norm of vector a, is equal to 1.

It is worth noting that once a vector a, able to maximize z, variance is found, this variance
could be further increased using an alternative vector ca,, with ¢ > 1. Infinite possible

solutions would thus be found if the constrain described before was not adopted.

The maximum value for var z; under the described constrain can be found using the method
of Lagrange multipliers, i.e., by maximizing the objective function:

L=a'Sa - Ao - 1)

where A is the Lagrange multiplier.

oL

The derivative of L with respect to vector o™ has to be equalized to 0: ? = ()
o



According to the rules for vectorial derivation the previous equation can be written as:

2Sa. - 2ha; =0 ‘ Sa, - Ao, =0

Vectors a, solving the equation are called eigenvectors of matrix S, whereas the
corresponding A. values are called eingevalues.

If the first eigenvector and eigenvalue are introduced in the equation, the following
equations can be obtained:

Sa, - Ao, =0 ‘ Sa, = A0y ‘ a"'Sa,=a' 4, a=1,

Since aTI S &; corresponds to Var(z,), the first eigenvalue, A, is also the variance of

the first principal component.



Once the first principal component is obtained, a second component z,= a,'x,

not correlated with z,, is calculated to account for most of the remaining variance of data.
A new eingevector, a,,, is thus obtained, respecting the constrains a,,'a,= 1 and a,Ta,, = 0.

The new objective function now contains two Lagrange multipliers, A and ¢:
— T T T
L - (12 Saz - ﬂ«(az (1.2 = 1) - ¢((12 (X.l = O)

When the derivative of L with respect to vector a," is calculated and equalized to 0, the
equation solution is the eigenvector a,, with the corresponding eigenvalue, A,.

The procedure is repeated until the total variance of matrix X is accounted for by the
eingevalues:

P
Z ﬂ“K — total variance of X

K=1

Principal components resulting from the procedure are usually ordered in terms of
decreasing variance and the reduction of complexity occurs by limiting the analysis to the
most important components in terms of variance.



Data projection in Principal Component Analysis

Generally speaking, the product between a matrix X, ,, and a vector Vip x 1 vector s = X v,
can be interpreted, geometrically, as the projection of a set of n points in a p-dimensional
space (points whose co-ordinates are the terms of rows in the X matrix) on an axis defined by
vector v.

In @ more general case, the n points defined by matrix X can be projected in a k-dimensional
space, T, defined by k new axes, each represented by a column of the P, ,, matrix,
according to the matricial equation:

T = X P
(nxk) = (nxp)(p xk)

T is called score matrix, since points represented by matrix T in the new space are called
scores.

P is called loadings (or eigenvectors) matrix.

If X represents the matrix of input data for PCA, T corresponds to a matrix reporting in each
row the values of principal components for the n samples and P is a matrix reporting in each
column the coefficients that need to be multiplied by the p original variables to obtain
principal components. Note that k, the number of principal components, was equal to p in
calculations shown before, yet PCA can also be performed by choosing k < p.



Loading matrix P can be obtained from the covariance matrix S of original data through an
operation called diagonalization:

S =PAP/

In this equation matrix A is a diagonal matrix, i.e., it has values different from 0 only along its
main diagonal. Importantly, diagonal terms of matrix A correspond to eigenvalues, A, A,,..., kp,
ordered in decreasing order.

As explained before, each column in matrix P correspond to a different principal component
and each row to a different original variable:

PC, ... PC ..... PC
X, [Olgq| eeee [Obgg]| soee [Olgp)

X (1]1 csee ajk ssee G.Jp

X apl cssee a,pk seee apq

The generic term o, of the matrix represent the loading of variable X; in principal component
PC, i.e., the coefficient referred to that variable in the calculation of the principal component.



It is worth noting that loadings o, are standardized linear coefficients, i.e., the sum of their
squares is equal to 1:

A loading oy, with an absolute value close to 1 indicates that the k-th principal component is
represented mainly by the j-th original variable.

On the other hand, a value close to 0 indicates that the variable is almost not represented at

all in the principal component.

It is worth noting that eigenvalues assuming very low values are reasonably related to
variability due to noise or to non relevant information. In this case the corresponding
principal components can be eliminated.

When the number of principal components, k, is equal to that of the original variables, p, the
projection discussed so far coincides with a simple rotation, thus P is called rotation matrix.

In this case all the information initially contained in matrix X is kept.



Geometric interpretation of principal components

As already discussed, principal components individuate a new co-ordinates system, so that
the maximum variance, corresponding to PC,, is located on the first axis, and progressively
lower variances are located on other axes.

The new co-ordinates, called scores, are the result of linear combinations in which original
variables (usually centered or autoscaled) are combined according to loadings.

As an example, the score of the i-th sample for the k-th principal component is:

P
Ly = Z i Xy
=1

In vectorial terms:
— T
L = Oy X

where both o, and x; are vectors of length p.



Once principal components have been calculated, the inverse procedure enables the
reproduction of the original matrix of data, X, as the product of matrix T and of the
transposed version of matrix P:

This equation can be easily demostrated:

T=XP 4=) TP"=XPP" 4m) TPT=X
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A graphical representation -
of the operation is shown in
the figure on the right: N T
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The change in the representation of multivariate data can be easily visualized for bivariate
data.

First, the centroid is calculated for original data and is subsequently adopted as the origin of
the new reference system (a procedure known as centroidation or mean centering):




A rotation of axes, aimed at finding the direction
characterized by maximum variance, is performed
afterwards:

After rotation new co-ordinates are defined for
each point with respect to rotated axes.

The optimal rotation is the one able to minimize
the sum of squared distances between each point
and its projection of the Y, axis:

Pp;f

j=1

O = centroid




The following equations can be written:

(OPy)* = (OP")* + (PP")?

> (OP;f = i(_OPJ- + %(Pjpj)z
=1 J=1 =1

—_

O = centroid

It is worth noting that the choice of axis Y, must be able to minimize the second term in the
right member of the last equation but, as a consequence, it leads to maximize the first term
in the same member.

As a simple graphical demonstration, if the light blue Y, axis shown in the figure is
considered as an alternative to the purple Y, axis, the distance between P; and the new P/
projection (the light blue one) is lowered and the distance between the centroid and the
new P/’ point is increased.

Notably, the term in the last equation including OP;’ distances corresponds to the variance of
projections of points on the Y, axis, thus explaining the formulation of the determination of
principal components provided by Hotelling.



Main steps of PCA

Based on the considerations made so far, the main steps of Principal Component Analysis
are:

1) pretreatment of data matrix X, through centroidation or autoscaling, i.e.,
centroidation followed by division by standard deviation;

2) calculation of covariance matrix (corresponding to the correlation matrix, if autoscaling
of variables is performed preliminarily);

3) calculation of eigenvectors and eigenvalues of the covariance (or correlation) matrix;
4) calculation of the score matrix;
5) graphical representations (scores plot and loadings plot).

It is worth noting that the use of correlation matrix can be preferred when variables are
expressed with different units and/or when they are characterized by quite different

variances.

In the latter case principal components based on covariance matrix would emphasize
variables having a large variance.



A numerical example of PCA: bivariate data

Let us consider the table on the right,
reporting two properties (X; and X,) for 20
chemical elements:

A graphical representation of data can be
easily obtained:
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NO.  Element  Erctronegativity (X,) pserg%‘i’ipfjfn”i&gore
1 H 21 125
2 Li 0.9 161
3 Be 145 108
4 B 19 0795
5 c 237 0.64
6 N 285 054
7 0 332 0.465
8 F 378 0405
9 Na 0.89 265
10 Mg 131 203
1 A 1.64 1675
12 S 198 142
13 p 23 1.24
14 S 265 11
15 ol 208 1.01
16 K 08 269
17 Ca 147 3
18 Sc 15 275
19 T 186 258

20 v 22 243




Centroidation of data can be also
represented graphically:

Avg. of X,

_l

Avg. of X,

v

X(nlp) Xc(n,p)

[ 21 1,25 | [ 0,1005 -0,368|
09 161 -1,0995 -0,008
1,45 1,08 -0,5495 -0,538
1,9 0,795 -0,0995 -0,823
2,37 0,64 0,3705 -0,978
2,85 0,54 0,8505 -1,078
3,32 0,465 1,3205 -1,153
3,78 0,405 1,7805 -1,213
0,89 2,65 -1,1095 1,032
131 2,03 - -0,6895 0,412
1,64 1,675 -0,3595 0,057
1,98 1,42 -0,0195 -0,198
2,32 1,24 0,3205 -0,378
2,65 1,1 0,6505 -0,518
2,98 1,01 0,9805 -0,608
0,8 3,69 -1,1995 2,072
117 3 -0,8295 1,382
15 2,75 -0,4995 1,132
1,86 2,58 -0,1395 0,962

222 243 / | 0,2205 0812




The covariance matrix S is the following:
-0.5929 0.9026

0.6881 -o.5929}

Eingenvalues and eigenvectors can be obtained using the equation shown before:
S=PAPT

where P is an orthonormal matrix and A is a diagonal matrix.

Introducing numbers, the equation can be expressed as:

| _ | 0.64108 -0.76747|1.397805 0
-0.76747 0.64108 0 0.192835

The two eigenvalues are: A, =1.3978 and A, = 0.1928.

From a graphical point of view eigenvectors provide the | .~ T 37»2

orientation of the main axes of the covariance ellipse, S~ I

whereas eigenvalues provide the length of axes: < >




It is worth noting that the trace of the covariance matrix S, i.e., the
sum of elements along the main diagonal, correspond to the total
variance of the original data, i.e., 1.5907.

Variable X; contributes to this variance for 0.6881/1.5907 = 43.26%

Variable X, contributes to this variance for 0.9026/1.5907 = 56.74%

If the diagonal matrix A is considered, its trace corresponds to the
total variance explained by principal components and is equal to
1.5906, thus identical (apart from rounding effects) to that of the
original data. This is reasonable, since the numbers of original
variables and of principal components are the same in this case.

Notably, PC, and PC, contribute for 1.3978/1.5906 = 87.88 % and for
0.1928/1.5906 = 12.12 %, respectively.

S

0.6881 -0.5929
-0.5929 0.9026

A

1.3978 0
0 0.1928

It is thus apparent that the transformation of original variables into principal components
has led to a different distribution of explained variance, increasing remarkably the one
explained by the first component with respect to the one explained by the first original

variable.



The matrix of scores, T, can be obtained from the X_and the P ones: T = Xc P

PC1 PC2 -
" 0,3469 -0,31305 | i 01005  -0,368
-0,6987 0,84897 10995  -0,008
0,0606 0,76663 05495  -0.538
0,5678 0,60397 10,0995  -0.823
0,9881 0,34263 03705 -0.978
1,3726  0,03835 0.8505 1078
1,7314  -0,2743 13205 -1.153
2,0724  -0,5889 17805 1213
-1,5033  0,18992 p— -1,1095 1,032 0.64108 -0.76747
-0,7582  0,26505 06895 0,412
02742 023936 03505 0.057 -0.76747 0.64108
0,1395 0,1419 -0,0195 -0,198
0,4956 -0,0036 0,3205 -0,378 P
0,8146 -0,1672 0,6505 -0,518
1,0952  -0,3627 0,9805 -0,608
-2,3592  -0,4077 -1,1995 2,072
-1,5924  -0,2494 -0,8295 1,382
1,189  -0,3424 -0,4995 1,132
-0,8277  -0,5097 -0,1395 0,962
-0,4818 -0,6898 | 02205 0,812
T X

C

As an example, for the first sample the PC1 score is: 0.1005 * 0.64108 - 0.368*(-0.76747) =
0.3469; the PC2 score is: 0.1005 *(-0.76747) - 0.368 * 0.64108 = -0.31305



Each row of matrix T reports the co-ordinates that each sample will have in the reference
system based on the two principal components. Its graphical representation, reported
above, is usually called Score plot.

It is worth noting that a symmetrical plot with respect to the origin of axes is equivalent to
the one shown above. This feature is called mirror effect of PCA.



Loadings plot

As explained before, in PCA loadings represent the contribution of each original variable to a
specific principal component. Their graphical representation, usually called loadings plot,
can be very informative.
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As an example, the plot shown above indicates that variables 1, 2 and 3 have a remarkable
(and negative) contribution fo PC,, whereas variables 4 and 5 contribute to PC,.

Generally speaking, variables whose points are close to the origin of the loading plot are not
relevant for any PC, whereas variables whose points are close to each other are correlated,
i.e., they provide a similar information.



Plots including both scores and loadings, called bi-plots, can be reproduced after the
processing of data based on PCA.

In the following example the scores referred to several samples and the loadings referred to
10 variables, corresponding to the concentrations of different elements, are reported in a bi-
plot:

b
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Note that the contribution of each principal component to the total variance is indicated in
the axes names.



Choice of the number of principal components

Different criteria can be adopted to select the optimal number of principal components.

1)

2)

Predetermined value of the explained variance

According to this approach, the k principal components that explain a cumulative
variance of 80-90% can be retained:

A+A 4+ A,

P
2.4
i=1

~80-90%

Mean eigenvalue

The k principal components whose eigenvalues are greater than the mean eigenvalue

are retained:
p
>

A2 2A 2=
p

Note that if variables are autoscaled (i.e., the correlation matrix is used for
diagonalization) the mean value of eigenvalues is 1. Since the choice of components
with eigenvalues greater than 1 is too severe, a threshold of 0.7 is sometimes adopted.



3) Scree plot

The scree plot reports the percentages
of variance explained by each principal
component.

In the figure on the right cumulative
percentages have been also added.

This graphical representation helps the
user in choosing which principal
component should be considered as
the last useful one.
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Correlation between principal components and original variables

The degree of correlation existing between the i-th PC, z, and the j-th original variable, X;, is
provided by the following correlation coefficient:

Cov(zi,X ) Ao a; /1
lVar Var(X )J]/z - l/IiVar(X )jl \/Var

e X, )=

where o is the loading of X; on z,

As expected, variables contributing to a PC with a relevant loading (in absolute value) will
determine the meaning of that PC.

A graphical representation known as correlation | ._
circle enables an easy evaluation of correlations. ors| ‘. \

05 | / ‘ T c.;
Indeed, the circle is drawn with unitary radius in a o
plot in which each variable corresponds to a point |*® 1 B
whose co-ordinates are the correlation coefficients o‘ ———
between the variable and the principal components | v ——
on the two axes. y4

-0.5 \ +
The more a point is close to the circle, the greater is = foss| ! a /
its correlation with the two PCs. }

=1 -0.73 -0.3 -0.25 1] 0.25 0.5 0.75 1




Conceptual considerations on PCA

Due to the approach adopted for the calculation, each principal component represents
variations in data due to different intrinsic properties, thus PCs represent macroproperties
of the system under study, not directly measurable.

PCA enables the recognition of emerging properties of the system, that can be related to
synergic or antagonistic effects of the original variables.

As en example, if some chemical compounds are described contemporarily by a certain
number of descriptors (molecular weight, molar volume, etc.) a specific PC in which each of
these descriptors is remarkably represented is expected.

This PC becomes a new «macrovariable», whose meaning goes beyond that of the single
original variables.

Whether this information is interpreted or not, it represents a new synthetic description of
the system under study.

Moreover, not relevant variations or the one caused by experimental noise are not
represented in a principal component.



A further numerical example of PCA: data referred to five variables

Let us re-consider the following data matrix, representing the concentrations (ppm) of five
elements in nine hair samples:

X original data matrix

_ Cu Mn Cl Br |
9,2 0,3 1730 12 3,6
12,4 0,39 930 50 2,3
7,2 0,32 2750 65,3 3,4
10,2 0,36 1500 3,4 5,3
10,1 0,5 1040 30,2 1,9
6,5 0,2 2490 90 4,6
5,6 0,29 2940 38 5,6
11,8 0,42 867 43,1 1,5

L 8,5 0,25 1620 5,2 6,2 |
9,05556 0,33667 1763 43,0222 3,82222 means

2,32815 0,09152 790,425 33,3582 1,70424 standard deviations

A first inspection of variable values and of means and standard deviations indicates that Cl
concentrations are quite different in the nine samples. In this case, the autoscaling of data,
i.e., the use of correlation matrix, is highly recommended.



1. Centroidation and autoscaling of data

The mean referred to each column s
subtracted from all the values of the same
column in the original matrix of data, thus
obtaining the centered matrix of data:

Values obtained in each column are divided by
the standard deviation referred to that column
in the original data, thus obtaining the
autoscaled matrix of data:

X_ : centered matrix of data

_ Cu
0,14453
3,34454

-1,85547
1,14454
1,04454

-2,55547

-3,45547
2,74454

| -0,55547

Mn
-0,03666
0,05334
-0,01666
0,02334
0,16334
-0,13666
-0,04666
0,08334
-0,08666

Cl
32,9824
-832,982

987,018
262,982
722,982

727,018

1177,02
-895,982
142,982

Br
-31,0218
6,978208
22,27821
-39,6218
-12,8218
46,97821
44,97821
0,078208
-37,8218

|
0,22222
-1,52222
0,42222
1,47778
-1,92222
0,77778
1,77778
2,32222
2,37778

X, : autoscaled matrix of data

Cu

0,06208
1,43656
-0,79697
0,49161
0,44865
1,09764
1,48421
1,17885

| -0,23859

Mn

-0,400626
0,582819
-0,182083
0,255004
1,784807
-1,493343
-0,509898
0,910634
-0,946984

Cl

0,04173
-1,05384
1,248718
0,33271
-0,91468
0,919781
1,489095
-1,13355
-0,18089

Br

-0,93003
0,209207
0,667901

1,18786

0,3844

1,408407
1,348447
0,002345

1,1339

-0,13036
-0,89307
20,2477
0,867035
1,12775
0,456345
1,043045
1,36243
1,395065 ]




2. Calculation of Correlation Matrix, R, of original data

The second step is the calculation of the covariance matrix for autoscaled data, that is
actually equivalent to the correlation matrix of original data:

Cu Mn | Br |
Cu 1 0,69738 -0,94981 -0,53995 -0,64524
Mn 0,697376 1 -0,692 -0,29135 -0,74884
Cl -0,94981 0,692 1 0,61308 0,58073
Br . -0,53995 -0,29135 0,61308 1 -0,04541
| -0,64524 -0,74884 0,58073 -0,04541 1




3. Calculation of eigenvalues and eigenvectors

Calculation of eigenvalues and eigenvectors is based on the matricial equation:

R=PAPT

The resulting diagonal matrix A, including eigenvalues, is the following:

explained variances

3.38763 0 0 0 0 mmm) 3.38763 /5=67.75%

0 1.1338982 0 0 0 mmm) 1.13390/5=22.68%
A= 0 0 0.301181 0 0 mmm) (0.30118 /5=6.03%
0 0 0 0.132766 0 mm) (0.13277 /5=2.66%
0 0 0 0 0.044528| wmmm) (0.04453 /5=0.89%

It is worth noting that when correlation matrix is used the trace of matrix A, i.e., the sum of
eigenvalues, is equal to the number of variables p:

Zp A =mrA=p
i=1



The scree plot referred to the five eigenvalues is the following:
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principal components

Considering both the criteria described before for the selection of principal components
based on eigenvalues, i.e., being greater than 1 or 0.7, the number of components to be
retained is 2.



The matrix of eigenvectors (loadings) P is the following:

Cu
Mn
Cl
Br

PC, PC, PC, PC,

[.0,517021 0,085173 -0,439943 0,219454
0,463559 -0,2639 0,764317 0,357606
0,514982 -0,17136 0,337149 -0,2954
0,298023 -0,74933 -0,309745 0,502054
0,404696 0,576401 0,112508 0,696161

Consequently, principal components can be expressed as:

PC,= -0.51702 Cu
PC,= 0.085173 Cu
PC,= -0.43994 Cu
PC,= 0.219454 Cu
PC.= - 0.6955 Cu

- 0.46356 Mn
- 0.2639 Mn
+0.76432 Mn
+ 0.35761 Mn

-0.05835 Mn

+0.51498 ClI +0.29802 Br
- 0.1714Cl - 0.7493 Br
+0.33715Cl - 0.3097 Br
- 0.2954 Cl +0.50205 Br
- 0.7103 Cl +0.04104 Br

PC;
-0,695504 |
-0,058355
-0,710282

0,041036

-0,08176

+ 0.404696 |
+0.576401 |
+0.112508 |
+ 0.696161 |
- 0.081761



4. Calculation of scores matrix

The matrix of scores T can be obtained from the equation T = X, P:

O 0O N OO B WN =

PC,

.0,197798
-1,854685
1,238331
-0,546844
2,101322
2.337843
2,594577
-2,166046

| 0,695831

PC,
0,739932
-0,52239
-0,87706

1,42145
10,63806
-0,64933
-0,65625
-0,73273
1,914371

PC;
-0,074179
-0,707128

0,397711
0,331934
0,850578
-0,733289
0,46497
-0,358797
-0,171645

PC,
-0,67499
0,318296
-0,44599
0,304583
0,028829
-0,02182
0,455188
-0,02809
0,064341

PCy
.0,017668
-0,203019
-0,274362
-0,240111

0,309915
0,217736
10,025593
0,043592
0,189093




The consequent scores plot for the first two principal components is the following:

PC2

-0,5 0,5 1,5 2,5

PC1

Three different clusters of samples can be observed in the score plot.




The loadings plot for the first two principal components is the following:
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0.6 - o I
2 .
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4, 15
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Mn 04 Cl 25 15 -o“s ) 0:5 1:5 2:5
-0,6 7 . *
4 .8 | g 6 7
0.8 - * Br B 3
PC1
-4 -
PC1
~ Cu Mn Cl Br |
The plot indicates that samples 3, 6 and 7 1 9,2 0,3 1730 12 3,6
share relatively high Cl Br 2| 124 0,39 | 930 50 2,3
concentrations, whereas samples 2, 5 3 7,2 0,32 | 2750 65,3 3,4
and 8 are particularly rich in Mn and Cu 41 10,2 0,36 1500 3,4 5,3
and samples 4 and 9 are rich in I. 5| 10,1 0,5 1040 30,2 1,9
6 6,5 0,2 2490 90 4,6
. . S
This outcome can be inferred from the 71 s6 0.29 2940 38 5,6
original dataset (but only because 8[ 11.8 0,42 367 431 15
variables are in a limited number). 9 8,5 0,25 1620 5,2 6,2




The correlation circle is obtained using formulas described before:

In this case Cu, Mn and Cl| are remarkably correlated with PC1 (the first two elements

negatively, the third positively).
Intermediate correlation coefficients towards both principal components are observed for |

and Br.



A further numerical example of PCA: data referred to 18 variables

38 wine samples were subjected to the analysis of 17 trace elements and the following
data matrix was obtained, including an evaluation of aroma as the 18-th variable:

ID ¢d Mo Mn Ni Cu Al Ba Cr Sr Pb B Me Si  Na Ca P K Aroma
1 005 .044 151 122 83 982 387 029 123 561 263 128 173 668 805 150 113 33
2 055 16 116 .149 066 1.02 312 038 975 .697 621 193 197 533 75 118 1010 4.4
3 056 .146 1.1 .088 643 129 308 035 1.14 .73 3.05 127 158 354 91 161 1160 3.9
4 063 .191 959 38 133 105 .165 .036 927 .796 257 112 134 275 936 120 924 3.
5
6

32 084 206 128 087 071 114 I8 049 794 13 377 143 197 391 128 146 123 42
33 .069 183 194 07 095 465 225 037 L.19 915 2 123 457 751 694 123 943 3.

34 087 208 176 061 099 .683 .087 .042 168 133 504 929 696 12 563 157 949 6.8
35 .074 142 244 051 052 737 408 022 116 .745 394 143 675 368 676 819 1170 5

36 .084 .I71 1.85 088 038 121 263 .072 135 899 238 130 618 101 644 986 1070 3.5
37 106 307 115 063 051 643 29 031 885 1.61 44 151 174 725 103 177 1100 43
38 102 342 408 065 077 752 366 .048 108 177 337 145 533 331 583 117 1010 52




The following results and scree plot were obtained from PCA:

ID efgem*afue EV% CEV2%

1 4.1785 24.6 24.6 s

2 27468 16.2 40.7

3 22098 13.0 53.7 -

4 1.9349 11.4 65.1 o

5 14355 84 736 2

6 1.0813 6.4 79.9 % 2

7 08527 50 84.9

8  0.6082 36 88.5 -

9 05129 3.0 915

10 0.4287 25 94.1 N

11 03711 22 96.2 — T T T T
12 02542 15 97.7

13 0.1682 1.0 98.7 compenents
14 0.1151 0.7 99 4

15  0.0495 03 99.7

16  0.0333 0.2 99.9

17 0.0193 01  100.0

E.V.%: percentage of explained variance
C.E.V.% : percentage of cumulative explained variance



Loadings for the first 6 principal components, those having eigenvalues greater than 1, are

reported in the following table:

D Var PCl ____ PC2 PC3 PC4 PC5 PC6
1 «Cd 10.125 ":.r-t}.:s::": 0.351 0.055 10.369 -0.233
> (Mo]) '0034 ;) 05461  0.150 -0.125 0.132 -0.096
3 Mn 10056 |! 0118} 0571 0.021 0.011 0.072
4 Ni 1-0.109 11 02471 -0.268 -0.140 -0.107 0.552
5 Cu 1.0.004 1] -0.1221  -0.219 -0.065 0.496 -0.061
6 Al 10.039 1! 0130; -0.278 10.420 0.047 0.352
7 (Ba 1-0.353 |1 0080  0.061 -0.229 0.348 -0.013
s =) 2 | - | 7 -

8§ « 10271 11 -0.118) 0.-1;56 0.101 0.394 0.087
9 [Sr ] 0415 y; 01871  0.134 -0.166 -0.085 0.168
10 10.030 ;! -0537;  0.168 -0.161 0.064 -0.091
11 B 10.020 11 -0.034]  -0.091 0.618 -0.052 -0.224

] _ 5 1 -0.048 1 075 =), - =1, 115
12 [(Mg] 10405 i 0.0481  0.075 0.084 0111 onﬂ
13 Si 1.0239 §] -0.142;  -0.282 0.308 -0.276 -0.123
14 [Na 10303 ! o161 -0.019  -0.194 0.228 -0.438
15 1-0.233 11 03331 -0.339 -0.022 -0.140 -0.116
16 P 1-0.256 1 00241 -0.015 0.289 0.368 0.342
17 1.0.403 ;! 0097 -0011 0.243 -0.029 -0.231

As apparent, elements contributing more to PC1 are all alkaline or alkaline-earth ones,

whereas Mo, Pb and Ca are those giving the greatest contribute to PC2.




As apparent from the loadings plot, elements contributing most to PC1 (negatively) are all
alkaline or alkaline-earth ones, whereas Mo, Pb and Ca are those having the greatest
(negative) contribution to PC2:

0.22

second component
=

0.48

.58

0.45 £0.35 0.25 0.15 0.05 0.05 0.15

first component




The score plot referred to the first two principal components enables a comparison between
samples:
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Samples 12, 20 and 24 are isolated on the upper-left zone of the score plot, likely because of
the high content in one or more alkaline or alkaline-earth elements.

On the other hand, sample 7 is isolated in the lower zone of the plot, likely due to the
presence of Mo and Pb in high concentration.



Another interesting plot that can be generated after PCA calculations is the one reporting
scores obtained for all samples in all principal components (corresponding to «columns»):

2 4 6 8 10 12 14 16
columns

This plot emphasizes the decrease in variance occurring progressively from the first to the
last principal component, as expected.

Actually, the variance of some components is still relatively high for the presence of samples
whose behavior is anomalous.



Use of Minitab 18 for Principal Components Analysis

PCA can be performed by Minitab 18 by considering the Stat > Multivariate > Principal
Components... pathway.

|m Minitab - Untitled
File Edit Data Calc |Stat Graph Editor Tools Window Help Assistant

= H | !EE| Basic Statistics » | 20 “'5;]' YR Eake |f
“ j Regression —L” | ” ToON d

4
ANOVA b
DOE »
Control Charts 4
4
4
4

D Session

Quality Tools
Reliability/Survival

Multivariate ﬂ Principal Components...

Time Series b |§ Factor Analysis...
Tables ’ E Item Analysis...
Monparametrics ]

Cluster Observations...
Equivalence Tests ] j‘ll

Cluster Variables...
Power and Sample Size 4 Aal

g@ Cluster K-Means...

\L Discriminant Analysis...

"/_\_ Simple Correspondence Analysis...

!}_‘\_ Multiple Correspondence Analysis... u




The original dataset is preliminarily transferred into the Minitab worksheet using rows for
samples and columns for variables, as shown in this example, where samples are represented
by mussel lipid extracts (labelled according to names reported in column C1-T) and variables
correspond to free fatty acids detected by LC-MS in those extracts:

(] Worksheet 1 ***
+ c1-T c2-T C3 c4 C5 C6 c7 c8 c9 C10
Sample Code 20:4 20:5 22:6 16:0 16:1 14:0 22:2 20:2
1 8-TFrA FTA 1.00000 0.78392 0.66834 5.78E-01 0.132161 0.071357 0.110050 0.062814
2 [8-7FrB F7B 091511 091885 0.53308 1.00E+00 0.124844 0.116729 0.068664 0.034332
3 [M7-2FrA F2A 0.18011 1.00000 0.56452 2.28E-01 0.080645 0.032581 0.031935 0.015591
4 17-2FrB F2B 0.16629 1.00000 0.60571 1.77E-01 0.061714 0.028345 0.026914 0.017943
5 [28-4FrA F4A 0.32951 1.00000 0.92350 3.32E-01 0.107104 0.032623 0.073224 0.033989
6 (28-4FrB F4B 0.32789 1.00000 0.78421 1.72E-01 0.067895 0.024947 0.051474 0.024000
7 21-4FrA F4A1 0.20792 1.00000 0.61881 1.28E-01 0.045149 0.025050 0.030099 0.013119
8 (21-4FrB F4B1 1.00000 0.64255 0.46383 5.79E-02 0.034255 0.009681 0.024043 0.009638
9 10-7 Refr A R7A 1.00000 0.85890 0.74233 4.86E-01 0.103681 0.071166 0.130675 0.103067
10 |10-7 Refr B R7B 1.00000 0.95041 0.79835 5.85E-07 0.157025 0.090083 0.139669 0.074298
11 14-7 Tamb A H7A 0.79593 0.80894 0.71870 4.07E-01 0.136585 0.070081 0.144715 0.059837
12 [14-7 Tamb B H7B 1.00000 0.65048 0.36571 4.98E-01 0.091048 0.062571 0.080571 0.062762
13 |17-7 Long Refr A LR7A 0.79399 1.00000 0.84120 4.55E-01 0.190129 0.097425 0.149356 0.078970
14 |14-7 Long Refr B LR7B 0.84444 099444 1.00000 6.28E-01 0.164444 0.096667 0.161111 0.077222
15 16-7 sress A LLR7A 1.00000 0.65969 0.47054 4.23E-07 0.116279 0.052868 0.164341 0.093798
16 |16-7 sress B LLR7B 1.00000 0.92045 0.78409 4.01E-07 0.121591 0.008011 0.111364 0.068750

Note that a further text column (C2-T) can be used to report classification codes that can be
useful to recognize samples on the score plot.



Inside the Principal Components Analysis window variables to be considered for calculations
are selected, then the number of components to be computed is set (it can be lower than
the total number of variables). Last but not least, the choice of data matrix, correlation or
covariance, implying the centroidation or autoscaling of data, respectively, is indicated.

Several types of graphical representations can be selected in the Graphs... window. Minitab
18 is able to reproduce only the score and the loading plots for the first two components.

Principal Components Analysis et

c3 0 2004 ~ \Variables:
4 20:5 |
C5 22:6
Ca 16:0
c7 161

ca 14:0 Mumber of components to compute: I

co  22:2 [ Scree plot

Ci0  20:2 Type of Matrix [ Score plot for first 2 components
C11 18:1 -

C12 206 - CUFFE'_E'“D” [ Loading plot for first 2 components
€13  18:0 (" Covariance / [~ Biplot for first 2 components

C14  20:1 -
Cutlier plot

C15  24:0 I_ P

Cle  20:0

C17 19:1

Cc18 171 N Help | OK Cancel
Select | Graphs... Storage...

Help | oK Cancel

Principal Components Analysis: Graphs X

In any case, the storage of scores obtained for further principal components into additional
columns of the worksheet can be selected in the Storage... window.



Once the calculation is completed, several types of information are included in the Session
window. First, eigenvalues and the fraction of variance explained by each principal
component (in the present case 27 principal components were calculated), along with
cumulative values, are reported:

Eigenanalysis of the Correlation Matrix

Eigenvalue 98295 46957 24590 20375 14903 1369 10905 07593 06574 05156
Proportion 0364 0174 0091 0075 0055 0051 0040 0028 0024 0019
Cumulatve 0364 0538 0629 0705 0760 (0810) 0851 0879 0903 0922

Eigenvalue 04041 03919 03499 02641 01688 01604 00994 00749 0049 00412
Proportion 0015 0015 0013 0010 0006 0006 0004 0003 0002 0002
Cumulatve 0837 0952 0835 0975 08981 097 0990 0933 0995 0997

Figerwalue 00324 00232 00192 00070 00033 00035 00018
Proportion 0001 0001 0001 0000 0000 0000 0000
Cumulatve 0998 0999 08999 1000 1000 1000 1,000

Note that the first six components were able to account for more than the 80% of total
variance in this case.



Eigenvectors, i.e., loadings of variables on principal components, are also reported.
In the following figure only those relevant to the first 8 principal components are shown:

Eigenvectors
Variable FC1 FCZ FC3 PC4 FC3 FCo FCT FCa
20:4 -00d2  -0240 -0263 0286 -0032 0295 -07128 0,308
20:5 -009% 0076 0123 -0132 -0pd43 -0144 -0172 0192
18:0 0270 -0094 oO084 0193 -0081 0174 -0178 -0,151
181 0,293 008> 0034 0041 -0023 0081 0011 0001
14:0 0,230 -0066 0091 0205 -0056 0020 -0232 -0362
22:2 o008% -0710 -0448 0091 -0142 -0248 -0292 -0,313
20:2 0246 -0103 -0243 -0230 0003 -0095 -00V9 0030
2006 0063 -0293 0360 0022 -0006 -0001 -0231 0102
18:0 0125 -02%8 0121 o109 -0748 0331 -0275 0093
2011 0234 -0094 -0138 0049 -0128 -0126 0181 0142
24:0 009 -0331 -00v2 0288 -0154 -0134 0328 0096
20:0 0e -0281 -0130 0299 -0039 -0101 0311 0073
181 0293 -0031 -0012 -0173 0034 -0031 00683 0038
171 0277 -0012 0080 -0234 -0011 0135 0038 0243
16:4 0252 0167 00V7 0073 -0148 -0134 0116 0221
18:3 0233 0242 o012 0099 -019 -0013 0017 0237
18:2 0294 07111 0081 0050 -0099 -0080 0063 0056
OH 20:3 0134 -0241 0319 -0124 0131 -0138 0080 -0026
OX022:5 4 0261 0091 -0259 -0089 0079 0005 -0042 0011
OX0 225 B 0107 0014 -0V -0313 -0209 0325 0331 -0387
20H 22:6 0278 07109 -0030 0016 0073 -0071 -0070 -0066
0¥ 205 -0001 0266 0169 0311 071%2 -0088 -0030 0,145
OXO 226 0071 0289 -0007 0422 0031 -0227 -0080 -0,209
28:8 -0036 -0048 -0251 -0242 07121 -0436 -0219 0302
Yaree ox /¥ aree nativi -0,108 0268 0,138 -0008 -0427 -0011 0129 -0101
Area ac.grassi / area PC 0131 0274 -0045 -0009 0311 0,285 00% 0,749
OX¥0 22:4 0112 -0200 0340 -0147 0126 -0342 0137 -0224




Score, loadings and scree plots can be easily generated by the program. In the following

figure, the score plot, indicating a clear clustering of mussel samples with a different
thermal history, is reported:
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l. Losito et al., Food Chemistry, 255 (2018) 309-322



The loading plot emphazises which variables are responsible for the distinction of sample
clusters.
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l. Losito et al., Food Chemistry, 255 (2018) 309-322



Another example of Principal Components Analysis

Three-dimensional score plot
obtained for 100 salmon samples
fished in different countries, based
on the abundance of 30 different

fatty acids in the fish meat ?:
(determined by mass g
spectrometry): g .
=
# Farmed — Canada = °
& Farmed — Norway E s
&=
# Farmed - Chile ]"

B Wild - Canada

As apparent, wild Canadian
salmon samples could be clearly
distinguished from all farmed
salmon samples, apart from their
geographical origin.

G.M. Fiorino, |. Losito et al., Food Research International, 116 (2019) 1258 - 1265



The loading plot referred to the first two principal components, with variables labelled with
the conventional names for fatty acids (C:D, with C = number of carbon atoms, D = number
of C=C bonds) provided some explanations for the difference observed between wild and
farmed salmons:

10 ; : . : ; i :
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08} :
20:5 (EPA) 18:0
06226 | 5y 20:2 s
(DHQ 20,30 204 184 23, :
el | 28 ®51 : 203‘ /182
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p1

Wild salmons contained higher concentrations of long and highly unsaturated fatty acids,
including omega-3 ones (like 20:5 and 22:6), whereas fatty acids like 18:1, 18:2 and 18:3,
resulting from feeding based on vegetal oils, were more relevant in farmed salmons.
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