
Inverse calibration in multicomponent analysis

As discussed previously, the most common approach of multiple linear regression to
multicomponent analysis is the direct calibration method, in which absorbance values
obtained at different wavelengths are considered as dependent variables, whereas the
component concentrations represent independent variables.

The method relies on the following equation for the total absorbance obtained at the i-th
wavelength, with bji representing the normalized absorptivity of component j (with j = 1, 2,
…, m) at the i-th wavelength:

Sometimes this simple additive model may not describe the system completely.

The main two reasons are described as follows:

  substances of interest may interfere with each other chemically in a way that affects their  
spectra

  mixtures from ‘real-life’ sources may contain substances other than those of interest, 
which provide a contribution to the absorbance.



In these cases, it is better to use inverse calibration and calibrate with ‘real-life’ mixtures. 

The term “inverse calibration” means that the analyte concentration is modelled as a 
function of absorbances (i.e., the reverse of the classical method).

The regression equation takes the following form:

thus, the concentration of the i-th component is obtained by combining terms related to the 
mixture absorbances Aj, measured at different wavelengths (with j = 1, 2, …, p).

Multiple linear regression is one of the regression methods that can be used for inverse 
calibration, i.e., to predict one or more concentrations from a set of absorbance values.



Application of Multiple Linear Regression (MLR) to inverse calibration

As an example of application of MLR to inverse calibration, a dataset obtained by measuring 
the UV absorbance at 6 different wavelengths (A1, A2, …, A6) for 10 specimens (A, B, …, J) 
containing 3 compounds of interest at different concentrations (c1, c2 and c3) , is reported in 
the following table (note that absorbance values are multiplied by 100):

The MLR equation can thus be expressed, for each of the 3 compounds, in the following 
form:

Notably, MLR can be applied since the number of specimens is larger than the number of 
predictors.



MLR calculations for c1, performed using the Minitab program, provided the following 
results: 

fitting

prediction

The resulting regression equation for c1 was the following:

Regression equations for c2 and c3 were the following:



Plots of residuals vs. fitted values and of predicted values of c1 vs. measured ones are shown 
in the following figures: 

As apparent, residuals do not show any particular pattern and points are reasonably close to 
a straight line with unitary slope in the plot comparing predicted with measured 
concentrations.



The prediction performance can be validated by using a cross-validation method based on 
the “leave-one-out” principle.

Specifically, values for the first specimen (A) are omitted from the data set and those for the 
remaining specimens (B–J) are used to find the regression equation of, e.g., c1 on A1, A2, etc. 
The same procedure is then repeated, leaving each specimen out in turn.

The Predicted Residual Error Sum of Squares (PRESS) is then calculated in each case: the 
closer is the value of the PRESS to zero, the better is the predictive power of the model.

Actually, information on the relevance of predictors in terms of model quality can be 
inferred directly from the tabular summary of regression statistics provided by the Minitab 
software.
Since only the P value for the A6 regressor was lower than  0.05 in the present case, it can be 
concluded that any one of predictors from A1 to A5 could be left out of the model without 
reducing its effectiveness.

It is finally worth noting that many more than 6 absorbance values are usually available 
when an entire UV spectrum is acquired for a multicomponent mixture. 
In this case the number of samples can be lower than the number of absorbance values, 
thus other approaches need to be adopted to make a better use of data. Principal 
Component Regression is one of them.



Principal Components Regression (PCR)

The Ordinary Least Squares solution for Multiple Linear Regression may be ill-conditioned 
when:

 the predictors are highly correlated, thus leading to mathematical complications (e.g., 
difficulties in inverting matrix XTX) resulting in unreliable predictions;

 the number of predictors exceeds the number of training samples.

As an example, if the correlation matrix for data considered before is visualized:

It is apparent that a remarkable degree of correlation exists between some predictors.



A possible solution may be found by projecting each measurement into a lower-dimensional 
subspace.

This procedure, which is the base of PCR, is equivalent to the extraction of principal 
components.

The first step consists in applying the already discussed matricial equation including the 
covariance, SX, or correlation, RX, matrix referred to data X:

SX (RX) = P Λ PT

Afterwards, matrix T = XP is obtained. 

As evidenced before, T represents the score matrix, whereas P is the loadings (or 
eigenvectors) matrix.

The number of principal components is usually equal to the number of variables (p) in the 
initial stage of calculation, yet a low-rank approximation of X can be obtained in a second 
step, by keeping just the first k (with k < p) principal components, since they usually 
account for most of the total variance of data:

X = T PT X ≅ Tk Pk
T Tk = X Pk



In the final step the regression problem is treated in a lower-dimensional predictor space by 
using principal components as the new predictors:

where α is the vector of regression coefficients in the k-dimensional space of principal 
components.

Based on the analogy shown above, the following equations can be written:

Since  Tk = X Pk vector α can be expressed as:

Considering the properties of the Pk matrix, this equation is equivalent to the following one:

y = Tk α + ε y = X β + ε

α = Pk
Tβ

y = Tk α + ε = X β + ε = X Pk Pk
Tβ + ε

β = Pkα



Starting from the equation considered in multiple linear regression for vector b:

vector aPCR, representing estimates of regression coefficients in the principal component 
space, can be obtained using the following equations:

Vector b, representing estimates of regression coefficients in the space of original variables 
can be calculated from vector aPCR:

Once this vector is known, the vector of predicted values corresponding to a new set of 
variable measurements, Xnew, can be readily obtained:

b = (XTX)-1 XT y 

b = Pk aPCR = Pk (Tk
TTk)-1 Tk

T y



A numerical example of Principal Component Regression

Let us re-consider the dataset previously shown for the MLR application to inverse 
calibration: 

A Principal Component Regression (PCR) of these data can be performed using the Minitab 
18 program, i.e., by performing a multivariate linear regression using principal components 
obtained preliminarily by PCA.
In the upper part of the following table eigenvalues corresponding to principal components, 
with their specific and cumulative contributions to total variance, as obtained after PCA, are 
reported.



In the lower part of the table values of loadings of each variable in the six PCs are reported.
Notably, variable A6, the only appearing significant in the MLR model developed before, is 
the one having the highest loading on the first PC, that explains more than 72% of total 
variance.

Moreover, the first three principal components already account for the 99.3% of the total 
variance, thus a Tk matrix with k = 3 can be calculated.

The corresponding values, corresponding to scores, are reported in the following table, with 
the notation adopted by Minitab, which uses Z instead of T.



These scores can 
thus be employed 
for a multivariate 
linear regression of 
concentration c1 
based on Z1, Z2 and 
Z3:



It is worth noting that the PRESS statistic is lower than the one obtained using MLR.

Moreover, based on P values, all the regression coefficients other than the constant term are 
significantly different from zero, thus the possibility of fitting a model with zero intercept 
could be eventually explored.

The regression equation can be expressed as:

but it can also be transformed in terms of Ai variables, considering the equations relating 
each principal component Zi to Ai variables. As an example:

A similar calculation can be made also for Z2 and Z3, thus the regression equation can be 
finally be expressed as:

Interestingly, A6 is still the numerically most relevant variable in the regression model.



Partial Least Squares (PLS) regression

Partial Least Squares regression is a biased regression method. As already discussed, when 
describing the validation of methods, a biased method looks for a bias-variance trade-off, 
i.e., for a compromise between the model complexity and its variability.

PLS regression can be used when:

 the samples/variables ratio is lower than 1

 highly correlated variables are present

 more than one response is present (i.e., a matrix of responses, Y, replaces the vector of 
responses y).

When using PLS, a unique model, explaining all responses, rather than as many models as 
the available responses (like for PCR), can be obtained.

This is very useful when also responses are correlated.



Supposing that X and Y represent matrices of variables and responses, respectively, the first 
step of a PLS method is the decomposition of both matrices X and Y:

By analogy with procedures described for PCA and PCR, this operation corresponds to 
projecting the two matrices into spaces of latent variables T and U, respectively, and then a 
regression between T and U is performed.

The decomposition can be made independently, so that couples of component vectors t and 
u are iteratively selected until the couple leading to the maximum covariance is found, then 
a further couple is obtained.



Peculiar features of the PLS method are:

1) PLS components are selected to generate the maximum reduction of the covariance 
matrix (XYT), so that the method provides the minimum required number of variables

2) One component at a time is provided (for each iteration), thus PLS can be considered as 
a step-wise procedure

3) The procedure goes on until significant components, able to improve the predictive 
power of the model, exist

4) The iterative process stops when there are no further couples of components in X and Y 
correlated enough or when there is no further useful information that can be extracted 
from X and used to predict Y

5) The number M of optimal components in PLS is determined by cross-validation, i.e., it is 
the one leading to maximum R2

cv.



Geometric interpretation of Partial Least Squares

Supposing that three independent and three dependent variables are involved in the PLS 
calculation, the original data, after centroidation, can be represented as in the following 
figure:

In this example 17 samples are considered, thus both X and Y include 17 rows and 3 
columns.



The first PLS component can be represented as a couple of new axes, one in the X space, 
corresponding to vector t1, and the other in the Y space, corresponding to vector u1:

The two axes fulfil the requirement of indicating the direction of maximum dispersion for 
points related to observations, which is typical of the first principal component in PCA. At 
the same time, the relation between them is important, since they should account for the 
maximum covariance between X and Y.



Further components are obtained subsequently, following the typical constrain of principal 
components in the X space, thus implying that the second component in the X space, 
represented by the axis t2 in the following figure, must be orthogonal to t1, as shown in the 
following figure (in which a higher number of observation points is represented):

On the other hand, no limitation with respect to the first component extracted from the Y 
space, u1, occurs on the second component, u2, since the key aspect is the maximum 
covariance between t2 and w2, thus u2 is not necessarily orthogonal to u1.
The projection of a specific observation point in each space on axes t1/t2 and u1/u2 is 
evidenced in the figure.



Notably, if projections on axes t1/u1 and t2/u2 are reported in a graph, one versus the other, 
it is clear that the level of correlation between them decreases when going from the first to 
the second couple of components:

The correlation is expected to decrease further for higher components, since a progressively 
lower portion of the covariance between X and Y is accounted for by them. 

A least-squares regression model is finally obtained using the components found in the 
previous steps of the PLS procedure.



A numerical example of PLS

Let us re-consider the dataset previously used for inverse calibration based on MLR and for 
PCR with matrices X and Y emphasised:

The PLS regression can be 
performed using the Minitab 
18 software, using the Stat > 
Regression > Partial Least 
Squares… pathway.



Worksheet columns including data for responses and for predictors are selected 
appropriately in the Partial Least Squares window (the Model box is used for predictor 
columns):

The type of Cross-Validation (if any) can be selected in the Options… window. The 
Prediction… window can be used to select further columns, where new values of variables 
and the corresponding values of responses can be stored. 



Several types of Graphs, concerning 
model and component evaluation and 
residual analysis, can be selected in 
the Graphs… window:

Several types of results can be selected in the Results…window, so that they can be 
displayed in the Session window after calculations. Many output data can also be selected 
in the Storage… window for storage in the Worksheet after calculations.



In the following panels the results obtained by choosing the “leave-one-out” method for 
cross-validation are reported for response c1.



Four components have been found to provide the best model for c1 and an explanation for 
this choice is provided by PRESS values reported in the Minitab’s output.

Indeed, the lowest PRESS value (0.0052733), slightly lower than the one found after PCR 
using 3 components, is obtained for a PLS model with 4 components and it is increased 
when further components are added. Equivalently, the R2 value in prediction is highest for a 
4-component model, then it is decreased at the increase of the number of components.

Coefficients obtained for the 
PLS model are reported in the 
table on the right:

Consequently, the regression equation is:



Comparison between MLR, PCR and PLS approaches

The following equations were obtained for c1 according to the approach adopted: 

Although the coefficient values differ from one model to another, they have the same sign in 
each equation and in all three equations the coefficient for A6 dominates over others. 
Notably, its values are close to each other (especially for MLR and PLS approaches).

It is finally worth recalling that MLR cannot be carried out when the number of variables is 
greater than the number of specimens, which is not a rare circumstance.
In this case, rather than selecting only a few variables, it is better to reduce their number by 
using PCR or PLS.

Many recent applications of PCR and PLS have arisen in molecular spectroscopy, where 
strongly overlapping absorption or emission spectra are often observed, even in simple 
mixtures. 
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