Cluster Analysis

Cluster Analysis (CA) is a multivariate method searching for a clustering of observations. Like
Principal Component Analysis, CA is an unsupervised method, i.e., a method in which no
preliminary information on the classification/clustering of samples is available.

In the context of Cluster Analysis a «cluster» can be defined as a group of contiguous
elements in a statistical population.

A more operative definition is based on the evaluation of internal cohesion for each cluster
and of external separation between clusters.

As shown in the following figure, referred to bivariate data:

it is not surprising that the problem of the recognition of clusters may not have a single
solution.




When the true labels for samples are reported, e.g., using a colour code, it is apparent that
the solution including six clusters is the optimal one:

[nput data | True labels

The general principle of the method is searching for non casual structures in data, relating
the concept of non casual structure to that of group and looking for the presence of groups
in the data space, in contrast with the hypothesis of complete homogeneity (isotropy).

It is worth noting that Cluster Analysis can be used to find structures in data without
necessarily providing explanations or interpretations.



Hierarchical Cluster Analysis (HCA)

In HCA objects (individuals, observations, etc.) are divided into a series of nested clusters,
according to a hierarchical relation that can be represented through a graph known as

dendrogram.

One of the axes of the dendrogram reports the logical distance between clusters/samples

according to the defined metrics.
The other axis indicates the hierarchical level of aggregation.

Root, edges and internal and terminal nodes (leaves) can be individuated in a dendrogram:

terminal nodes (leaves)

root

internal nodes

Logical
distance
between
- clusters
3.0 2.0 : 0.0

height (or weight) Bl

Hierarchical level of aggregation

topology




Two different strategies can be followed for
hierarchical clustering:

1) agglomerative - it is a bottom-up
approach, in which the starting point is
the insertion of each element in a
different cluster, followed by grouping
between the resulting clusters, two at a
time

2) divisive - it is a top-down approach, in
which all elements are initially located
in a single cluster, which is then
recursively divided into sub-clusters.
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Distances and similarities

In order to decide how single samples/clusters must be combined (in the agglomerative
approach) or how a cluster must be divided (in the divisive approach) a measurement of

(dis)similarity between clusters, based on the distance in the multivariate space has to be
defined.

Examples of distance measurements are the following:
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where p is the number of variables describing each object, labelled by subscript k, whereas i
and j indicate two different objects.



Euclidean distance

Euclidean distance, corresponding to the geometric distance between two objects in a
multidimensional space, is likely the most used. In the figure it is shown for bivariate data:
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One of the advantages of Euclidean distance is the independence on the addition of new
objects, that could eventually be outliers.

On the other hand, Euclidean distance based on original variables can be strongly influenced
by scale differences between different dimensions. It is thus a good practice to transform
dimensions so that they have similar scales.



Manhattan or City Block distance

Manhattan distance considers the way two points on a city map would be connected by
going around one of the city blocks. Its graphical representation for two dimensions is the

following:
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A comparison between distances obtained using different approaches can be performed by

considering the following set of 6 objects (points) in a bi-dimensional space:
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If point p1 is considered, the red circumference in the following figure includes all points in
the plane whose Euclidean distance from p1 is the same as that of p1 from p3.

On the other hand, points whose Manhattan distance from p1 is the same as the Euclidean
pl-p3 distance are located on the perimeter of a rotated square whose side has Euclidean
length equal to the p1-p3 distance multiplied by 21/2,
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Minkowski distance with r = 3

If the Minkowski distance s
considered with r = 3, points are
located on a distorted circle, drawn
with a black line in the figure on the
right.

At the increase of r in the formula of
Minkowski distance:
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the distorted circle is progressively
enlarged at the corners, as evidenced
by the grey point drawn in the figure,
corresponding to the case of r = 18.
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The loci of points in a 2-dimensional space at a distance of 1 from the center (O) using the
Minkowski distance function with different values of the order r are shown in the following
figure:
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Along with Manhattan distance (r=1) and Euclidean distance (r=2), the Dominant distance (r
— +o0) is another specific case of Minkowski distance. In the last case the locus of points is a
square centered in O.




Canberra distance
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If Canberra distance for the pl-p3
couple is calculated (0.31373),
further points with the same
distance from p1 can be drawn in the
graph (blue points) and a comparison
can be done with the loci of points
whose Euclidean or Manhattan
distance from p1 is equal to the pl-
p3 distance.
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Comparison between values of the distances between pl and the other points shown
before, as such or normalized by the pl-p2 distance, measured according to different
approaches.
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Properties of metric distance and standardization of variables

A metric distance between two objects i and j satisfies the following conditions:
i > 0 non negativity
— dji symmetry

dij = () if 1=] separability

d

ij = dik + dkj triangular inequality
Standardization of variables before proceeding with cluster analysis can be based on:

1) standard deviation _ xaif' this approach downweights variables with high

for each variable j S standard deviation

2) z-scores X

: choice of mean and standard deviation is critical

S . in this case



Matrix of distances and measures of similarity

Given the matrix of data X, in which each row represents one of the n objects and each
column the p variables related to objects, the distance between each couple of objects is
calculated according to one of the formulas shown before.

N
A dissimilarity matrix D including all distances, is obtained:
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Elements along the main diagonal of matrix D are obviously all equal to zero, since they
represent the distance between an object and itself. The matrix is also symmetric.



Once distances are calculated, measures of similarity, that are complementary to the former,
can be obtained.

A general formula for the calculation of similarity between objects i and j is:

S. =1 9,
i dl.j(max)

Where dj(max) is the maximum distance between two objects in the entire matrix of
distances.

The following properties can be easily predicted for S;;:

ij — i

The similarity of an object with itself is obviously equal to 1, since the distance of an object
with itself is equal to 0.

Moreover, if d; =d; also S; =S;,.



Once matrices of distances (or, equivalently, of similarities) are calculated, a clustering
algorithm has to be implemented to obtain clusters.

The general workflow for Cluster Analysis can be thus represented as follows:
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Clustering algorithms in agglomerative Hierarchical Cluster Analysis

Clustering algorithms operate on the distance (or similarity) matrix according to the following
general criteria:

1. Individuation of more similar objects or clusters to form couples

2. Gathering of the two clusters (or objects) in a uniqgue new cluster, at a certain level of
similarity

3. Calculation of the level of similarity of the new cluster with respect to the remaining
ones.

Several algorithms can be used to agglomerate clusters:

Single linkage
Complete linkage
Average linkage
Centroid linkage
Ward method

A A



Single linkage method

The single linkage method, also called nearest-neighbour method, is based on the definition
of similarity or distance between clusters.

In particular, the level of proximity between two groups is evaluated by considering only
information pertaining to the nearest objects belogning to the two groups, thus ignoring that
referred to other objects.

Indicating as A and B two groups, the distance to be considered is:

d,.= min d. .
4B ieA,jeB bJ

In graphical terms, this distance can be represented as in the following figure:




As an example, let us re-consider the following bivariate dataset including 6 points and its
graphical representation:
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Euclidean distances between objects are calculated as follows:
_ 2 21172
d; = [(x;;—x;)* + (x;2— x;5)°]
As an example, the distance between objects p2 and p5 is:

d,< = [(0.22-0.08)2+(0.38-0.41)2 ]/2=[0.0196+0.0009]"2 = 0.14



The matrix of Euclidean distances is the following:

pl p2 p3 pd p5 pb
pl | 0.00 | 0.24 | 022 | 0.37 | 0.34 | 0.23
p2 | 024 | 000 | 0.15 | 0.20 | 0.14 | 0.25
p3 | 022 | 0.15 ] 0.00 | 0.15 | 0.28 | 0.11
pd | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22
p5 | 0.34 [(0.14)] 028 [ 0.29 | 0.00 | 0.39
p6 [ 023 1 0735 [{0.11)] 0.22 1 0.39 | 0.00
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As apparent, minimum distances are observed between objects 3 and 6 and between objects
2 and 5. Two clusters, i.e., 3-6 and 2-5 can thus be considered as the basic ones.

It is worth noting that distances between each object in one of these clusters and all the
objects in the other one are all greater than the two distances evidenced above, thus the first

clustering is confirmed.

Further objects are subsequently considered. In particular, object 4 is slightly closer to the
two clusters than object 1.



Five nested clusters can thus be drawn in the
plot of points:

The dendrogram resulting from Cluster
Analysis is reported in the figure on the
right:
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Complete linkage method

The complete linkage method, also called farthest-neighbour method, is based on the
definition of similarity or distance between clusters based on the distance between their
farthest points.

Indicating as A and B two groups, the distance to be considered is:

d,.,=max d. .
A8 icA,jeB by

In graphical terms, this distance can be represented as in the following figure:




Considering the same dataset described before, the complete linkage method leads to a
different clustering.

In fact, group 3-6 is merged with object 4 at the second level of clustering because the
maximum of distances between cluster 3-6 and object 4 is 0.22, whereas the maximum of
distances for clusters 2-5 and 3-6 is 0.39 (the distance between points 5 and 6), thus these
two clusters cannot be grouped together.

Cluster 2-5 is merged with object 1 at the third level of clustering.

The results of CA using the complete linkage method can be thus represented graphically in
the following figure:
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Average linkage method

The average linkage method considers all distances between the n, objects of group A and
the ny objects of group B and then calculates their mean:

1 ngy nNg
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The outcome resulting from application of this approach to the already considered dataset
can be represented graphically as follows:
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The average linkage method represents a compromise between single and complete linkage
methods.



Comparison between dendrograms obtained by Minitab 18 for the same dataset using the
average linkage algorithm but changing the distance type:

Dendrodram Den
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Note that, although the similarity values are slightly different, the clustering of the 6 objects
is comparable in the two cases.



Centroid method

In the centroid method a centroid, i.e., a point whose co-ordinates are the arithmetic means
of those of all other objects belonging to the group, is defined.

The distance between two groups is thus coincident with the distance between the
respective centroids:

d,, =d(X,,X,)

When two groups are fused together, the centroid for the new group will be:
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The Ward’s method

The Ward’s method, also called Ward’s minimum variance method, introduced by the
American statistician Joe H. Ward jr., aims at minimizing variance inside groups. Clustering is
thus considered to be better when the resulting groups are more homogeneous internally
and more different between each other.

The method starts by considering all n samples divided into n clusters of size 1 each, then n -
1 clusters are sequentially formed, one of size 2 and the remaining of size 1.

The error sum of squares (ESS), i.e., the sum of squared differences between the co-
ordinates of each sample in the size 2 cluster and the corresponding mean, is calculated for
each of the size 2 clusters. The pair of samples providing the smaller ESS will form the first
cluster.

In the second step of the algorithm, n - 2 clusters are formed from the n - 1 clusters defined
in the previous step. They may include two clusters of size 2, or a single cluster of size 3
including the two items clustered before. Again, the minimum value of ESS is searched for to
decide how the new clusters are defined.

The algorithm stops when all samples are combined into a single large cluster of size n.



In the Ward’s method the similarity between two clusters is based on the increase in squared
error when two clusters are merged.

As an example, in the following figure three initial clusters (A, B and C) are shown in a
bivariate dataset:
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According to the Ward’s algorithm cluster A has to be merged with cluster C since the
resulting new cluster exhibits a lower dispersion of points around the centroid than the

cluster resulting from the merging of clusters A and B.



A comparison between different types of hierarchical clustering applied to the same

shown before is reported in the following figure:
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A step by step example of hierarchical clustering

Let us consider the following matrix including calcium and phosphate concentrations
(mg/100 mL) observed in six individuals:

Sample Calcium Phosphate
1 8.0 5.5
2 8.25 5.75
3 8.7 6.3
4 10.0 3.0
5 10.25 4.0
6 9.75 3.5

Euclidean distance is chosen as the approach to measure distances.
As an example, the distance between samples 1 and 2 is:

d, = [(8.25-8)2 + (5.75-5.5)2]%/2 = [0.0625+0.0625]%/2 = 0.354.



The matrix of distances is the following:

1 2 3 4 S 6
0
0354 O

1.063 0.711 O

3.201 3.260 3.347 O

2.704 2658 2.774 1301 O
2.658 2.704 2990 0.559 0.707 O

OO, WN -

Let us suppose to use average linkage as the agglomerative clustering algorithm.

First, samples 1 and 2 are the closest ones. The level of similarity for these samples is:

d,

S, =l———"— =1-0.354/3.347 = 0.89 = 89%
’ d ,(max) ’



The dendrogram can thus be constructed by considering samples 1 and 2 as a cluster (1%*):

Similarity
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The distances between the 1* cluster and the other samples are:
1* 3= (d1 5+ d2 3)/2=(1.063 +0.711)/2 = 0.887
= (d14 + d2 4)/2=(3.201+3.260)/2 =3.231

dys 5= (dy s +d,5)/2 = (2.704 + 2.658)/2 = 2.681
dysg = (dy g +d,6)/2 = (2.658 + 2.704)/2 = 2.681



The first reduced matrix of distances is thus the following:

1* 3 4 S 6
10
0.887 0

3.231 3.347 O
2681 2774 1.031 O
2681 2990 0.559 0.707 O

OOk W=

As apparent, samples 4 and 6 are the closest ones among other samples, thus they can be
fused in a unique cluster, 4*, with a level of similarity:

d,
S; =1 ————— =1-0.559/3.347 = 0.833 = 83.3%
dl.j(max)



The dendrogram becomes:
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Distances involving cluster 4* can now be calculated:

dys ge = (dye o + dg 12)/2 = (3.231 + 2.681)/2 = 2.956
dy e = (dy , + d 6)/2 = (3.347 + 2.990)/2 = 3.169
ds ¢ = (dg 5 + ds ¢)/2 = (1.031 +0.707)/2 = 0.869

The second reduced matrix of distances

can be obtained afterwards: 1* 3 4* 5
171 0
3] 0887 0O

4*1 2956 3.169 O
o | 2681 2774 0869 O

Cluster 4* and sample 5 are the closest objects, thus they can be fused in a new cluster, 5%,
with a similarity:

d,
Sy =1———"— =1-0.869/3.169 = 0.726 = 72.6%
d; (max)



The dendrogram becomes:
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The distances between cluster 1* or sample 3 and cluster 5* are:

Ay ge = (dyo s + g 44)/2 = (2.681 + 2.956)/2 = 2.819
dy g = (dg 5+ d34:)/2 = (2.774 + 3.169)/2 = 2.972




The third reduced matrix of distances can be obtained

afterwards: 1 3 0"
171 0O
3 0.887 O

°"| 2819 2972 0

Cluster 1* and sample 3 are now the closest objects, thus they are fused in the new
cluster 3*, with a similarity index:

d,
S. =1—-——— =1-0.887/2.972=0.70 = 70%
a’l.j (max)



The dendrogram becomes:

Similarity
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The distance between clusters 3* and 5* is:

s 5o = (dys ge + d35:)/2 = (2.819 + 2.972)/2 = 2.896



The fourth reduced matrix of distances is:

3* 5*
3| 0
9"l 2.896 0
The final dendrogram is:
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A plot of average distance as a function of clustering stage can be generated to emphasize
the evolution of agglomerative clustering:
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A comparison of dendrograms resulting from Cluster Analysis based on the Euclidean
distance but different clustering algorithms, namely single and complete linkage and
centroid methods, emphasizes that, although distances (or similarities) can be slightly
different, a similar outcome is obtained, compared to the average linkage method:
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A further example of hierarchical clustering
Let us re-consider the set of Cu, Mn, Cl, Br and | concentrations in 9 hair samples.

The dendrogram obtained using the Euclidean distance and the single linkage algorithm is
the following:
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The so called cluster scatterplot can be also generated using some programs, like
Statgraphics, to emphasize the position of samples in a 2D graph based on values of two
selected variables.

In the following example, the scatterplot based on Cl and Br concentrations is reported:
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The three intermediate clusters of samples observed in the dendrogram are shown. Notably,
the cluster scatterplot is quite similar, in terms of sample clustering, to the score plot referred
to the first two principal components obtained using PCA.



Non hierarchical clustering methods

Non hierarchical methods are based on aggregative algorithms that produce a single
partition, i.e., a division into separate clusters of the original dataset, starting from a set of
initial centers.

At each step of the algorithm they reconsider the partition previously obtained; indeed,
clusters obtained are erased and the aggregation process restarts from new centers.
Differently from hierarchical methods, the assignment of an object to a cluster is not
irrevocable.

Non hierarchical methods are less demanding in terms of calculations than hierarchical ones,
since the number of clusters is predetermined, based on the optimization of a parameter.

One of the most common methods among non hierarchical clustering approaches is known
as K-means.



K-means algorithm

The K-means algorithm is based on the following steps:

1.

2.

the number, k, of clusters that will be individuated is chosen;

k values of the dataset are selected, usually randomly, and considered the centroids of
the k clusters;

Euclidean distance with respect to the selected centroids is exploited to assign the
remaining data to the clusters;

the co-ordinates of the new centroids are calculated from data referred to objects
belonging to each cluster;

if the new centroids are equal to those calculated previously the procedure stops,
otherwise steps from 3 to 5 are repeated and a new evaluation is made.



A graphical description of the k-means algorithm for objects represented by two co-ordinates
is shown in the following figure:
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A numerical example of k-means method: k = 2

Let us consider the following dataset, with its graphical representation:
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A value k = 2 is selected and points A and B are chosen as the initial centroids:

C,=(1,1)and C, = (2, 1)

The matrix of distances from the centroids is: Cc1 c2
A 0 1
B 1 0

Consequently, points A is assigned to cluster 1, c 3,61 i'g':
D 5 I

whereas points B, C and D are assigned to cluster 2.



The new centroids are:
C,=(1,1); C,=((2+4+5)/3, (1+3+4)/3) = (3.67, 2.67)

The new matrix of distances and the graphical representation of clusters and centroids are:

45 ’,-""""'s\
- !/’ Df‘:
C1 ) 25 / :
3 ! +* ’f
A 0 3,14 . B X c /
B 1 2,36 2 G N N
C 3,61 0,47 e e
D 5 1,89 03 ~A__-B’
’ 0 1 2 3 4 5 -]

According to this matrix, points A and B are assigned to cluster 1 and points C and D to
cluster 2.

The within-cluster sum of squares: J(C'k) = Z” X, _-Uﬁ: ”2

X;ECk

can be exploited to decide when iterations can be stopped, since it is a measure of the
spread of points in a cluster around its centroid.



In the specific case J(C,) = 1 and J(C,) = 3.79, thus the total sum of squares is:

K
JO)=Y Y lx,—u, |’ =479
k=1 x;ec;
The new centroids are:

C,= ((1+2)/2, (1+1)/2) = (1.5,1.0); C2= ((4+5)/2, (3+4)/2) = (4.5,3.5)

The new matrix of distances and the graphical representation of clusters and centroids are:

4,5 P -~
: XS
¢+ D
c1 2 3 le

A 0.5 4.30 \ C -

B 0.5 3.54 ==

C 3.20 0.71 L3 AC} B

D 4.61 0.71 . <_

The same assignment obtained before is observed, moreover the J(C) value is 1.582, i.e.,
lower than the previous one. The procedure can then be stopped.




A numerical example of k-means method: k=3

Let us consider the following dataset, with its graphical representation:
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Points B, E and L are chosen as the centroids of the initial clusters.



The assignment of all the other points to one of the three clusters is based on their Euclidean
distances from the centroids.

A faster approach is based on the properties of the axis of an Euclidean segment.

Indeed, whatever point is considered on the axis of
NN o B

a segment, its distance from each end of the

segment end is the same.

Consequently, the axis divides the plane into two s
semiplanes, oo and . / S

A point located in the oo semiplane (like point P in g |
the figure) is thus closer to point A, whereas a ® @
point located in the B semiplane is closer to point
B.




In the following figure, the axes (a, c and d) of the three segments connecting the initial
centroids are drawn and the assignments of all the remaining points to one of the three
possible clusters are emphasized by a colour code.

As an examples, point J is closer to centroid L since it is on the left semiplane with respect to
axis a, perpendicular to segment BL; on the contrary, points A, N and D are in the right
semiplane, thus they can be assigned to the cluster related to centroid B.



Points included in the three clusters, reported with their co-ordinates, are the following:

Cluster 1 Cluster 2 Cluster 3
X y X y X y
A 1 2 K 4 3 F 2 4
B 1.5 1 G 5 2 | 3 4
C 2 1 H 5 1 J 0.5 2.5
D 1 1.5 E 4 2 L 2 3
N 1.5 2 @) 5 4 M 1 4

The new centroids can be obtained from the following calculations:

M =(1+1.5+2+1+1.5)/5=1.4
M, =Q2+1+1+15+2)/5=15

M

2.y
3.x
3.y

\
.

2,x

M =0B+2+1+2+4)/5=2.4

(4+5+5+4+5)/5=4.6

=(2+3+0.5+2+1)/5=1.7
(4+4+25+3+4)/5=3.5

Il




Starting from new centroids M,, M, and M, the new assighnments of points are:

-

Cluster 1 - M, = (1.4, 1.5) Cluster 2 - M, = (4.6, 2.4) Cluster 3 - M.j = (1.7, 3.5)

X y X y X y

A 1 2 K 4 3 F 2 4

B 1.5 1 G 5 2 | 3 4

C 2 1 H 5 1 L 2 3

J 0.5 2.5 E 4 2 M 1 4

D 1 1.5 O 5 4

N 1.5 2




The new centroids can be obtained from the following calculations:

M =(1+1.5+2+05+1+1.5)/6=1.25
2+1+1+2.5+1.5+2)/6=1.67

WX

M,

M, =(4+5+5+4+5)/5=4.6
M, =(3+2+1+2+4)/5=24
rM.".x
M,

(2+3+2+1)/4=2
(4+4+3+4)/4=3.75

As shown by the figure on the right, the
assignments of points are the same obtained
in the previous iteration, so the procedure
can be stopped.




The dendrogram obtained from HCA based on group average method is the following:

4

Distance
M
| T T T T | T T T T | T T T T | T T T T |

1T

A DNJ BC F |

L M E GH K O

As apparent, the two approaches provided the same

final result in terms of clustering.




The cluster scatterplot arising from the application of the k-means method is the following:
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An analytical application of Hierarchical Cluster Analysis

Cluster Analysis, together with Principal Components Analysis, was employed to characterize
the geographical origin of amber samples.

The analytical approach adopted to collect data is Head Space — Solid Phase Microextraction
— Gas Chromatography — Mass Spectrometry (HS-SPME-GC-MS).

In particular, amber samples were closed into glass vials with screw caps and then
thermostated at 70°C for 10 min; afterwards, the fiber of a SPME device, coated with
carboxen (carbon molecular sieve adsorbent resin) — polydimethylsiloxane, was inserted into
the headspace and kept there for 15 min, in order to extract volatile components released
from amber samples.

Volatile components were subsequently extracted thermally from the fiber, separated by GC
and identified using Mass Spectrometry.



An example of GC-MS chromatogram obtained from an amber sample is shown in the
following figure:
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52 compounds were identified and the areas of GC peaks for 10 of them were adopted as
variables for PCA and HCA.

l. Van der Werf et al., Talanta, 119 (2014) 435-439



The score plot referred to the first
two principal components,
accounting for ca. 73% of the total
variance, clearly  showed a
distinction between amber samples
originating from Romania (RX) and
those originating from  Baltic
countries (BX).

The loading plot clearly indicated
which compounds contributed most

to such a distiV
b
f

I. Van der Werf et al., Talanta, 119 (2014) 435-439
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As shown in the following figure, this outcome was confirmed also by Hierarchical Cluster
Analysis based on the Euclidean distance and on the Ward’s method.
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l. Van der Werf et al., Talanta, 119 (2014) 435-439



Use of Minitab 18 for Cluster Analysis

Hierarchical Cluster Analysis can be performed using Minitab 18 by using the Stat >
Multivariate > Cluster Observations... pathway.

Different combinations of Linkage method and Distance measure can be selected inside the
Cluster Observations window, in which the standardization of variables and the generation
of a dendrogram can be also chosen.

Stat Graph Editor Tools Window Help Assistant Cluster Observations oy
Basic Statistics » | (7] OHI @ (i ] Average
egression - C16 ariables or distance matrix: i
E > ~ Variabl dist t Centroid
ANOVA ' c1v C2-C31] | Complete |
DOE » C18 McQuitty
Control Charts » C18 Median
: C20

Quality Tools > 21 e Thod: Single
Reliability/Survival > oo inkage method:  |Complete ¥ Ward

. Distance measure: Euclidean -
Time Series | K5 Factor Analysis.. C24 [
Tables Yl tem Analysis.. €25 [ Standardize variables
Nonparametrics 14 - C26
Equivalence Tests 4 = Cluster Ob:-servatlons... ] E;; SF"ECifY final partition bY Manhattan
Power and Sample Size 4 "'_’:] E:uster \;a:lables... 29 i® MNumber of clusters: I 1 Fearson

= 1 4 :

o e 30 o Squared Euclidean

cl v 1 Similarity level: I Squared Pearson
[v Show dendrogram Customize... |
Select
Help | Storage... | (] 4 Cancel |

Note that setting 1 as the number of clusters in the box referred to the specification of final
partition indicates that one final cluster is reported at the top of the dendrogram.



The application described as an example is related to the distinction between 25 farmed and
26 wild Canadian salmons based on the profile of 30 fatty acids (FA) identified in their fillets
using mass spectrometry.

The dendrogram obtained using Euclidean distance and Complete Linkage is the following:

Dendrogram
Complete Linkage; Euclidean Distance

0,00

33,33

Similarity

66,67 |

A nice separation
it ] AR | petween farmed (e
10000 L IarmlmlOn LLLLELELLLLLLLEII il iiiiiiiiifl] lines) and wild (red
N PR A DDV 2UH NI RO ORI BN Mo

Observations

lines) salmon samples
was obtained.

G.M. Fiorino et al., Food Res. Int., 116 (2019) 1258-1265



Cluster Analysis based on K-means was also | Cluster k-Means X
performed on the same dataset, using the Stat |z " Variables:
. . C3 _
> Multivariate > Cluster K-means... pathway. ca e
C5
Co
. . c7 Specify partition by
Two clusters were specified in the Cluster K- | |cs @ Nomberofcusters: [z
. . . . . . Cg
!Vle.ans window and no initial partition was co O il partiion colurnn: [
|nd|Cated. gi; [ standardize variables
Cl4
C15
Cla
c17 b
Help Storage... oK Cancel

Final Partition

Average Maximum

Within distance  distance

Mumber of cluster sum from from
observations  of squares centroid  centroid

As a result, the 26 wild salmon samples were
classified in Cluster 1 and the 25 farmed ones Cluster1 26 865200 5338 10.522
were CIassified in Cluster 2. Cluster? 25 1160.798 4.910 26.129




Interestingly, the application of
Principal Component Analysis to the
same dataset confirmed the clear
distinction between the two types
of salmon (blue- farmed, red -
wild).

When the identity of fatty acids
mainly  responsible  for  the
distinction was evaluated from the
loadings plot, it turned out that
polyunsaturated FA with 20 or 22
carbon atoms, including ®-3 FA 20:5
and 22:6, were prevailing in wild
salmon, whereas FA 18:1, 18:2 and
18:3, along with oxidized
derivatives, were more abundant in
farmed salmon.
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Dendrograms with «heatmaps»

Several programs for chemometrics
elaborations are able to provide special
dendrograms after Cluster Analysis.

In this case, two dendrograms are actually
drawn, one of which indicating the
clustering of samples and the other the
clustering of variables.

Moreover, the values assumed by variables
(usually after autoscaling) are represented
by small boxes colored according to a color
scale, resembling a heatmap.

This representation, shown in the figure on
the right for the clustering of durum wheat
samples according to the contents of six
elements, is very effective, since it
emphasizes the similarities/differences of
variable values between clustered samples.
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