Classification methods

The goal of classification methods is associating an object (sample) to a specific class, based
on the values of a certain number of independent variables (descriptors)
The following requisites have to be fulfilled:

1) classes must be defined preliminarily
2) atraining set of objects (samples) must be available

3) each object of the training set can be assigned to one of the predefined classes.

The preliminary definition of classes can occur according to one of the following criteria:
1) classes are known a priori, based on theoretical considerations
2) classes are searched for through methods related to Cluster Analysis

3) classes can be defined through a categorical variable (e.g., the type of catalyst adopted
for a chemical reaction)

4) classes are defined through the categorization of a quantitative variable.



An example of procedure 4 is shown in the following figure:
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Objects/samples are thus assigned to classes 1, 2 or 3 based on the value of variable x;.
Once this is used to define classes, it is removed from the classification model.

The classification model is subsequently developed, starting from other variables related to
objects, which must be independent on classes.

After the model has been constructed, an B B
unknown object, not belonging to the training set, B (B)
can be assigned to one of the classes.

The most natural criterion for classification
consists in assigning this object (X) to the class

4
whose centroid is closest to the obiect, as shown A )
entroid. . . ()= X—c" = ¢
for a bidimensional space in the figure on the A c
right, where class centroids are indicated by A A
circles. X




Classification methods can be distinguished
in non-modelling and modelling ones.

Modelling methods produce a model able
to define the borders of each class, i.e., the
dimensions of a space enclosing all objects
belonging to that class.

They are drawn as ellipses in the figure on
the right.

Note that object X in the figure cannot be
assigned to any of the three classes, since
it is external to their borders.




Evaluation of a classification method: confusion matrix

The so-called confusion matrix enables the evaluation of a classification method, based on its
ability to assign objects correctly to classes.

In the matrix, actual classes, those adopted in the training set, are represented by rows,

whereas assigned classes are represented by columns:

actual
classes

assigned classes
B' ' ng
1 0 10
B 2 8 2 12
C 1 2 5 8
ngm 12 11 7 n =30

In the example shown in the figure, 30 objects are distributed among classes A (10), B (12)

and C (8).

Numbers reported along the main diagonal of the matrix represent objects classified
correctly, thus 9 (out of 10) for class A, 8 (out of 12) for class B and 5 (out of 8) for class C.



Numbers located outside the main diagonal represent objects that, although belonging to a
certain class, are erroneously assigned to another class.

assigned classes
classes A' B' C' ng
A 9 1 0 10
actual B 2 8 2 12
classes
C 1 2 5 8
rrg 12 11 7 n=230

Consequently:

1 object of class A has been assigned to class B;
2 objects of class B have been assigned to class A and 2 objects to class C
1 object of class C has been assigned to class A and 2 objects to class B

The final number of each row, n,, corresponds to the number of objects originally present in
a specific class.

The final number of each column, n,, corresponds to the number of objects assigned to a
specific class based on the calculated model.



A parameter that can summarize in a simple way the result of a classification procedure is the
correct classifications percentage, or, non-error rate, NER%, defined as follows:

NER%,
NER? = =£————x100

where NER%, represent the non-error rates for the different classes and G is the number of
classes.

In the specific example:

NER% (A) =9/10=90.0% NER% (B)=8/12=66.7% NER% (C)=5/8 =62.5%
thus:

NER%= [(9/10) + (8/12) + (5/8)]/3 x 100 = 73.05%

A parameter complementary to NER% is the error rate, ER%, defined as 100-NER%. In the
specific example ER% = 26.95%.



A priori probability, sensitivity and specificity of a class

If specific indications are not available, two equations can be adopted to assign a priori
probabilities to classes, P,:

| n
P:— :—g
L= p,=-

where n is the total number of objects.

In the first case the same probability is assigned to each class, without considering the
corresponding number of objects.

In the second case the probability corresponds to the ratio between the number of objects in
a specific class and the total number of objects.
This definition obviously leads to low probabilities for classes including a few objects.

The sensitivity of a class is defined as the percentual ratio between objects correctly assigned

to a certain class, c,,, and the total number of objects actually belonging to that class, n,:

c
Sn_=-25 %100

g
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The specificity of a class measures the capacity of isolating objects of a certain class from
those of other classes; indeed, it corresponds to the percentual ratio between the number of
objects correctly assigned to a specific class, c,,, and the total number of objects assigned to

gg’
that class, ng’:

c
Sp, =—=x 100

Hg'

In the following table, values of Sn,% and Sp,%, calculated from data shown before, are
reported:

-————n -———

Classes  Sn% | Sp% |
i ] |

A (9/10)190.0 1 17501 (9/12)

B (8/12) 166.7 | |72.7!(8/11)

C (5/8) 1625 171.4!(5/7)

— - ——

It can be easily verified that, if no incorrect assignment is made, sensitivity and specificity are
equal to 100% for all classes.



k-nearest neighbours (K-NN) classification method

The k-nearest neighbours classification method, first developed by American statisticians
Evelyn Fix and Joseph Hodges in 1951, and then expanded by the American information
theorist Thomas Cover in the Sixties, is a non parametric one, i.e., it does not require the
knowledge of the distribution of variables.

In this case classification is based on the concept of analogy.
The method considers the distance (usually the euclidean distance) between objects and a

selection of an integer number, k, of neighbour objects with respect to the one to be
classified.

The algorithm of the K-NN method includes
the following steps:

data scaling

choice of the type of distance to use

choice of the number of neighbours, k

calculation of the matrix of distances

el. consideration of the k-nearest
neighbour objects for a specific object

e2. assignment of the object to the most

represented class in the k neighbours.

00 T

Usually, several values of k need to be tried before finding the optimal one, i.e., the one
leading to the lowest number of classification errors in the training set.



When the same number of nearest neighbours belonging to different classes is found, the
object to be classified is assigned to the class for which the sum of distances between that
object and the nearest neighbours belonging to that class is minimum.

The K-NN model is not a mathematical model; it consists in the ensemble of the best k value
determined, the type of measure adopted and all objects belonging to the training set.

The prediction of the class for a new object is performed by adding the object to the training
set and then evaluating to which class the object is assigned, based on the criterion
described before.

The method usually provides good results and is particularly efficient when the borders
between classes are non-linear and particularly complex.



A numerical example

Let us consider the table shown on
the right, in which the results
obtained for four training samples,
represented by a special paper
tissue, are reported.

Two objective attributes (acid
durability and strength) and a
classification as bad or good,
provided from a survey with
customers, were obtained for each
sample.

X1 = Acid Durability
(seconds)

X2 = Strength

(kg/square meter)

Y = Classification

7

Bad

Bad

Good

Good

In this case the classification of the four samples of the training set is based on the

customers’ evaluation (bad or good).

The classification problem is expressed as follows:

a new paper tissue whose objective attributes are X1 = 3 and X2 = 7 is produced; the K-NN
method is adopted to evaluate if it would be classified as bad or good by customers.




Let us choose k = 3 as the first option.

Since the coordinates of the new object are (3,7), squared Euclidean distances from objects
of the training set can be easily calculated and ranked, as shown in the following table:

X1 = Acid Durability X2 = Strength Square Distance to query ~ Rank Is it included in 3-
(seconds) (kg/square meter) instance (3, 7) minimum  Nearest
distance neighbors?
7 7 (7-3) +(7-T)2 =16 3 Yes
7 4 (7-3*+(@4-7N*=25 4 No
3 4 (3-32+(4-7) =9 1 Yes
1 4 (1-3)* +(4-7)* =13 2 Yes

As shown in the last column of the table, two of the three nearest neighbours belong to class
«good», whereas one belong to class «bad», so the new object is assigned to class «good».



Another example: classifying elements between metals and nonmetals, based on
four periodic properties.

The fO”OW|ng fou r. periOdIC Table 1 Elements-and t-he four periodic Prq.aertiesa selected to run k-NN method. _ _
. Element Atomic radius (pm) lonization energy (kJmol—') Electron affinity” Electronegativity® Group
properties: fkdmol )
Meta

Lti I 152 519 &0 1.00 1
. . Ma 154 494 54 0.93 1
AtOmIC r‘ad|u5 K 227 418 48 0.82 1
. i Rb 248 402 47 0.82 1
lonization energy s 265 76 46 079 1
Lo Fr 270 400 44 0.70 1
Electron affinity = 113 0 &6, 1.40 2
Electronegativity G i 0 : 130 2
Ba 217 502 14 0.89 2
Ra*® 283 509 10 0.90 2
were considered for 38 a 1 77 e 160 s
elements, divided into two " o e - o "
classes: metals (22) and =z thei e o 11
. Pb 175 716 35 2.30 14
nonmetals (16), according to & 141 834 103 210 15
. o . Bi 155 703 M 2.00 15
some versions of the periodic P16 12 174 200 16
ta b I e ° NO;I‘"‘”‘]I 30 1310 73 2.20 -
B 88 79 7 2.00 13
C 77 1090 122 2.60 14
The KNN method was used to N i 1400 e i E
. P 110 1011 72 2.20 15
assign the elements to the two a2 947 78 220 15
. (4] 66 1310 141 3.40 16
classes, changing the number s 104 1000 200 2.60 16
. Se 117 941 195 2.60 16
of nearest neighbours from 1 to ¥ 1w 870 1%0 210 16
F 58 1680 328 4.00 17
10. cl 99 1255 349 3.20 17
Br 114 1140 325 3.00 17
| 133 1008 295 2.70 17
At 140¢ 1037 270 2.00 17

Vidueira Ferreira et al. Educacién Quimica 26 (2015) 195-201



The following results were obtained, in terms of % Error rate, according to the number of
nearest neighbours adopted:

Table 3  Mumber of misclassifications and error rate for each k value.
Class Number of elements Number of elements misclassified
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
Metal 22 2 2 0 0 0 0 1 0 2 0
Nonmetal 16 2 2 3 2 2 2 4 3 3 3
% Error rate 10.5 10.5 7.9 5.3 5.3 5.3 13.2 7.9 13.2 7.9
In pa rticular: Periodic table of the elements
[] Alkali metals [[] Halogens
. B group [] Alkaline-earth metals [] Noble gases
B) SI) P} AS an d Te g . 1 [ Transition metals [[] Rare-earth elements (21, 39, 57-71) 218
and lanthanoid elements (57-71 only)
were nonmetals ""H| 2 [ Other metals 13 14 15 16 17 | He
m |SCIa SS IfIEd as meta IS 3 2 [[] Other nonmetals [J Actinoid elements 5 6 7 8 9 10
2l Li | Be BJC|N|O|F|Ne
. 1 [12 13 [[14 J15 Y16 [17 |18
Na [ Mg | 3 4 5 6 7 8 9 10 11 12 | Al | Si P S | Cl | Ar
Ge d nd PO were 19 |20 |21 |22 |23 24 |25 (26 |27 28 |20 [0 |31 [32 135 134 |35 |36
metals misclassified as “'k |ca|se| Ti|Vv | cr|mMn|Fe|co|Ni|cu|lzn|Gal Ge] As| se | Br | kr
37 (38 [39 (40 [41 |42 (43 (44 |45 |46 [47 [48 [49 |50 [BT [52 |53 |[54
nonmetals ®'Rb|Sr| Y |2r [Nb|[Mo|Tc |Ru|Rh|Pd|Ag|Cd| In |sSn|sb|Te| I |Xe
55 |56 |57 |72 |73 |74 |75 |76 |77 |78 |79 [s0 [81 [82 (83 ([84 |85 |[s6
L. 6 Cs | Ba|La|Hf | Ta|W |Re | Os | Ir | Pt | Au|Hg| Tl | Pb | Bi | Po| At | Rn
Where the |n|t|a| : 87 (88 [89 [104 [105 [106 [107 [108 [109 [110 [111 [112 [113 [114 [115 [T16 (117 [118
CIaSSiﬁcationS were based Fr | Ra | Ac | Rf |[Db | Sg (Bh [Hs [ Mt [Ds ([Rg [Cn [ Nh | FI [Mc | Lv | Ts | Og

on a pe riodic table like the nthanoid serios. 6 |25 |72 |80 [61 [62 e Te4 Tes Tee [e7 es [e9 [70 [71
. Ce | Pr |Nd ([Pm |Sm |Eu |Gd | Tb [ Dy | Ho | Er | Tm | Yb | Lu
one reported on the rlght. 9 |91 |92 |93 |94 (95 (96 |97 |98 |99 [100 [101 (102 |103

actinoid series 7 Th [Pa| U [Np|Pu|Am |[Cm |Bk | Cf | Es |Fm |Md | No | Lr

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC). © Encyclopaedia Britannica, Inc.




The table on the right shows
which properties of those
elements had values compatible
with ranges characteristic of the
classes in which they were
misclassified

Misclassification was clearly
due to the partial overlap of
properties values for the two
classes for certain elements.

A less misleading version of the
periodic table of elements can
thus be the one in which most
elements misclassified using
the KNN method are actually
marked as metalloids.

Table 4 Ranges (minimum and maximum) for the periodic properties and the misclassified elements.

Periodic property

Atomic radius (pm) lonization energy (kJ mol~") Electron affinity (kJmol~') Electronegativity®

Metals

Min: 113; Max: 283 Min: 376; Max: 900 Min: —67; Max: 174 Min: 0.70; Max: 2.30

- B (799) B (27) B (2.00)
ormecats misclassiedss 907 S8 1139 0190
LLEES As (121) - As (78) As (2.20)

Te (137) Te (870) = Te (2.10)

Periodic property
Atomic radius (pm) lonization energy (kJ mol~") Electron affinity (kJmol~') Electronegativity®
Nonmetals

Min: 30; Max: 140 Min: 786; Max: 1680 Min: —7; Max: 349 Min: 1.90; Max: 4.00
Metals misclassified as Ge (122) - Ge (116) Ge (2.00)
nonmetals - Po (812) Po (174) Po (2.00)

3 Pauling scale.
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Discriminant analysis

The term Discriminant Analysis is used to indicate a group of methodologies that, starting
from a sampling set of N p-dimensional data X, divided into k classes (C,, C,, ..., C,), enable
the assignment of a generic object to one of the k classes.

Multivariate discriminant analysis was introduced in 1936 by the British statistician Ronald A.
Fisher, while he was studying the assignment of fossil evidences to primates or humanoids
starting from measurements taken on them.

The most used methodology for discriminant analysis is Linear Discriminant Analysis (LDA).

X, X5 X,
1
2
Class 1 : 3
N
Class 2 : |
The data set typical of LDA is represented by a N X p N
matrix.
Each row in the matrix represents an object (sample), !
characterized by p variables (X, X,, ..., Xp). Class K
. .
Eagh clgss mclugles N, rows, each corresponding to an N=N,+N, + ... +Ng
object included in the class.




In the following example, the data matrix arises from 15 apple juice samples, divided into 3
classes including the same number of samples (N, = 5), corresponding to as many varieties.

Each sample is described by the concentrations (g L?) of sucrose, glucose, fructose and
sorbitol (one of the names used to indicate the alditol corresponding to glucose), thus p = 4.

Varnety Sucrose Glucose Fructose Sorbitol
A 20 & 40 4.3
A 27 11 49 2.9
A 26 10 47 2.5
A 34 5 47 2.9
A 29 (16 = 140 | 7.2
B | 6 26 49 3.8
B 10 22 47 3.5
B 14 21 51 6.3
B 10 20 49 3.2
B 8 19 49 3.5
C 8 17 55 | 5.3
& 7 21 59 3.3
C 15 20 68 4.9
C 14 19 74 5.6
C 9 15 57 54




The questions to which LDA has to answer are:

1) do the four classes, defined a priori, differ also with respect to values assumed by the
four explicative variables?

2) If so, is it possible to define a decision rule applicable to a new object, whose class is
unknown?

As an example, how should an apple juice with concentrations 11, 23, 50 and 3.8 g L for
sucrose, glucose, fructose and sorbitol, respectively, be classified?

In the specific example, a 4-dimensional space would be required to represent all the original
15 samples, corresponding to the training set, and then verify if the original distribution
between classes is confirmed.

Afterwards, the unknown sample should be represented in the same space and its position
with respect to those belonging to the three classes should be evaluated.



In order to explain the general procedure, let us consider the simplest case, i.e., two classes
of samples described by two variables.

A graphical representation of samples 25—
belonging to the two classes is easily ¢ :
obtained in this case: 20— aop®
3 oo ol :

Projections of variables on the two axes are 2 10— . e -7'.'..:',-
useful to evaluate the degree of separation ',::
between the two classes. S of

o1 1 e| | |

0O 5 10 15 20 25 ——
As apparent, the two classes are poorly X, 9
separated, especially in terms of the X,
variable. thern

dax, [

The identification of class for a new sample
would be very difficult in this case.

A method to increase the separability between classes has thus to be found, e.g., by
considering the projection of samples in a direction differing from those of the variable axes.
This approach is the base of the technique called Linear Discriminant Analysis (LDA).



Linear Discriminant Analysis (LDA)

Let us consider a set of N p-dimensional data, of which N; belong to class C; with i going from
1 to k.

The N x p matrix of data X can be reduced to a N x 1 vector z through an appropriate linear
combination.

As discussed for Principal Components Analysis, this operation can be interpreted, from a
geometric point of view, as the projection of a set of points in a p-dimensional space on an
axis defined by vector z.

Using matricial notation, the operation can be expressed through the following equation:
z = X w where  w=(w, w,, ..., Wp)T
(Nx1)=(Nxp)(p x1)
w represents the vector of weights given to each variable in the linear combination.

Given the i-th object (sample), described by p variables, the operation leads to the following
scalar, with x; representing the i-th row of the X matrix transformed into a column vector:

— T —
Zi_ W Xl —W]Xl] +W2x12 + cee +prlp
1=(1xp)(p x1)



If vector w norm is equal to 1 (i.e., w represents a normalized weights vector), the linear
combination corresponds to a projection of data on a line whose direction is indicated by
vector w, passing through the origin of axes.

The choice of vector w has to satisfy some criteria:

1) weights w,, w,, ..., w, should be chosen so that the distribution of objects x; between
classes is reproduced by scalars z; in the best possible way;

2) the separation between scalars z, belonging to different classes should be maximized,
aiming at the best possible discrimination between classes, thus enabling a reliable
assignment of a new object (sample) to its class.



Let us consider the simplest case, represented by objects described by two variables and
distributed between two classes.
In the following figure, two different vectors w are represented:

Lid L

As apparent, only the direction adopted for vector w in the right panel is able to fulfil the
two requirements described before, since the projections referred to objects beloging to the
same class are close and the two groups of projections referred to the respective classes are
well separated.



An interesting comparison can be made between Principal Component Analysis (PCA) and
(Fisher) Linear Discriminant Analysis (LDA):

feature 2

class 1 :
class 2 :

faature 1

As apparent, the maximum variance direction, which is prioritary for PCA, is totally
inadequate for a classification of the two objects, which is the goal of LDA.

Actually, the minimum variance direction enables the best separation between the two
classes.



In order to find the best vector w, a measure of separation between classes has to be
defined. The distance between classes centroids can be adopted.

In the case of two classes including objects defined by two variables, classes centroids co-
ordinates are the following:

1
Hi = EZEQI” Hip = —Z i2

FEC]_

|

1
Hay N, Za‘ec: il Ko N,

where C, and C, are the set of values assumed by the two variables for the two classes,
respectively.

The centroids for each class in the direction obtained using vector w are:

1 T
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If column vectors p, and p, are defined as follows:

~ N ~ N
AL{'I'I 1”21
Hi 15
. 7

-2

. s

the two centroids can be expressed as inner products between the row vectors of weights
adopted for variables and column vectors expressing the centroids of the two classes in the

original co-ordinates:

-]

Y &
=W

T
y=whi,

L-]
Il

A target parameter, i.e., a quantity to be maximized, could thus be the distance, in absolute

value, between centroid projections on vector w:

J(w) :‘El —_:2‘: "wT(ﬂl—ﬂg)

clearly depending on the vector w selected.



However, the distance between the projections of classes centroids on a specific direction
does not take into account the dispersion of objects around centroids.

In the following figure the distributions of objects projections in specific directions are
represented by Gaussian functions with equal variance, thus centroids correspond to the

Gaussian maxima:

X X5

= e e e o e e e e e o mm e m m omm om m mm

X4 X,

As apparent in the left panel, although direction X, enables a good separation between
centroids, the overlap between classes projections is remarkable along it.
The direction minimizing the overlap betwen classes is the one shown in the right panel.



In the following further example, the separation between classes is better along direction x,,
although the separation of classes centroids is worse than that observed along direction x:

This effect is due to the fact that the spread of objects in the two classes is more remarkable
along direction x;.

For this reason, Fisher proposed an approach based on the maximizaton of centroid distance
normalized by a measure of class dispersion (like the within-class scatter).



Once a direction is selected for data projection, scatter is defined, for each class, as:

~2 —\2
=Y (-z)
! zeC; !

If two classes are present, the following quantity:

(Sl +5, )

is defined as the within-class scatter of projected samples.

The Fisher linear discriminant is thus A
defined as:

-

p—
—

The LDA procedure tries to maximize A
this quantity by choosing an
appropriate vector w.

z ’ i """""" _
F -7 - |
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Notably, J(w) can be expressed using an alternative equation:
“:TSBH’

T
w Sy w

J (w) =

where S; represents the between-class scatter matrix and S, = S; + S, represents the

within-class scatter matrix.

First, each S, can be expressed as follows:

S, =Y . (x-m)x-m)

1

consequently:

5 Z_-Eq (--Z )2 = Z_ﬁq (""Tx - wlu, )‘ = Z.ﬁc‘, (WTI

—wlp, )(wa —wly, )T

= ZEQ "’T(I—H; )(1 —ﬂi)rw = wTSiw

thus:
~2  ~2 T



The numerator of the J(w) quantity can be expressed as follows:

e

(‘El _Ez)ﬁ - ( MJf"’h - WTHE )2 = “’T(ﬂl _‘uz)(ﬂ1 —H, )TW’ — H?TSBW’

The following equation can thus be written:

2

z -z

J(w): “1 -2 _

~2 , 32 T
S +5; w Sw w

T
w Sgw

moreover, the total scatter is defined as:

ST:Z(Xi _ﬂXXi —ﬂ)T

where the sum is now extended to all samples, x; is a vector containing variable values for
the i-th sample and p is a vector containing average values for all variables.

T
w Spwo i

Since S; =Sy, + S, J(w) can be expressed also as: J(w): -
w Sw w



Maximization of the J(w) function

An important property of the J(w) function is its invariance with respect to a re-scaling of

vector w, i.e., it remains identical when a new vector, obtained by multiplying vector w by a
scalar a, is considered.

A specific vector w, able to fulfil the equality wTSW w =1, can be thus selected and the

.. . .. . T
maximization of J(w) corresponds to the maximization of w Sgw .

By analogy with the procedure followed for Principal Component Analysis, the problem can

be solved using the approach of Lagrangian multipliers, i.e., by maximizing the following
function:

Lw.2)=w Sgw —(w Syw-1)

The maximization corresponds to solving the following system:

p—

aL(w. 1) -
—— =28 W =2AS =0
] 1 T
AaL(w A w S, w =1
L): wTSww—-l =0 W

OA B



Each member of the first equation of the system can be multiplied by S, thus obtaining
the following equation:

S;ISBW = Aw

The maximization of the J(w) function can thus be considered as the solution of an
eigenvalue problem, were A is an eigenvalue of S,1S; and w is the corresponding
eigenvector.

Once w has been determined, the linear discriminant functionis: Z = WTX

If objects are represented by two variables (p = 2) this equation can be written as:

z=w; X; tw, X,
where w, and w, are defined Fisher non standardized coefficients.
If variables are expressed using different units of measurement it is better to consider Fisher
standardized coefficients, which are obtained by considering standardized values of

variables.

In any case, larger coefficients are related to variables with a higher discriminating capacity.



A numerical example of LDA with two classes

Let us consider bidimensional data 10
reported in the figure on the right,
originally divided into two classes:
8
Class 1 Class 2
x|, N x| % :
4 1 9 10 X2
4
2 4 6 8
2 3 9 5 5
3 6 8 7
4 4 10 8 0
0

Class centroids are:
u,=1[3.0 3.6]" n,=1[8.4 7.6]T



Since scatter matrices are defined as:
T
=X (v mlxom)

their calculation implies the consideration, for each of the two classes, of the (x-p,) matrix
and its transpose. As an example, the two matrices for Class 1 are:

X—H,
1 -26 (x—py)’
= 0.4 1 -1 -1 0 1
Lo 2.6 0.4 -0.6 2.4 0.4
0 2.4
1 0.4

4 -2

The resulting S; matrix is:
-2 13.2



In the case of Class 2 the two matrices required for the calculation of S, matrix are:

A

0.6 24 (x—p,)T

B 0.6 2.4 0.6 -0.4 1.6
te | e 2.4 0.4 26  -0.6 0.4
0.4 -0.6

16 04

9.2 -0.2

The resulting S, matrix is:
-0.2 13.2

The following step of the calculation implies the sum of S, and S, to obtain S,:

S, S, Sw

4 -2 9.2 -0.2 13.2 -2.2
+
-2 13.2 -0.2 13.2 -2.2 26.4



0.077 0.006
0.006 0.038

The inverse of S,, matrix, indicated as (Sy,)?, is:

The next step of calculation is finding the between-class scatter matrix, Sg:
— T
Sp = (*ul _#2)('”1 _#2)
In the specific case, the calculation is:

(Hy — 1) (1y — 1y)T (K — 1p) (py — )T
5.4 29.16 21.6
4 e — ‘ 216 16

The inverse of S,, matrix and S; matrix can now be multiplied:

(Sw)™ Sg (Sw)™* Sg
0.077 0.006 29.16 21.6 2.375 1.759
X =
0.006 0.038 21.6 16 0.996 0.738

For example: 2.375 =0.077 x 29.16 + 0.006 x 21.6



Starting from the equation S;}SB'W: Aw - S:SB Al =0

0
the following equation can be written (remembering that I = )
0 1

2.375-1  1.759 0 A?—3.113 A +(2.375*0.738 — 1.759*0.996)
0.996  0.738- A =A(A—-3.113)=0

The solutions of this equation are the eigenvalues:

A;=3.113 and A, =0

The eigenvector can be obtained by reconsidering the equation S;,ISB'W = Aw

and the non zero eigenvalue, i.e., A, = 3.113:

2.375 1.759 W, W,
= 3.113
0.996 0.738 W, w,



The following system is thus obtained:

2.375w, + 1.759 w, = 3.113 w, =) w, 2.34
0.996 w, +0.738 w, = 3.113 w, . 1.0

Vector w can be normalized to its norm, which is: \/(2,34)2 +(1)2 =2.545

Its components thus become: w, = 2.34/2.545 = 0.920 and w, = 1.0/2.545 = 0.393
Finally, the scalar z = w' x can be obtained:

z=0.920 X, + 0.393 X,

This equation represents the linear discriminant function for the problem under
consideration.



From a geometrical point of view, the 10 -
equation for z represents a specific ;
direction on the X, X, plane. . il Wl g
. . : o
In particular, it represents a line
passing through the origin and 6 ¢ \
forming an angle 6 of 66.9° with the Xy L % /
vertical axis. 4 \ lél 9 "é
N < “:\“\ /9/
Indeed: S /@a//
. 2 \\ ‘\‘ >
“Q‘gﬁ. Wiph
T
0.920/0.393=2.34=tan O N
. 2 4 6 8 10
! ]
0= 66.9°
0 =66.9°

As evidenced in the figure, the direction represented by the equation for z enables the best
separation between the projections of objects belonging to the two classes.



Classification of a new object using LDA

Once values of projections are found for objects included in the training set, the
classification of a new object can be based on the calculation of its projection, z, on the
direction of vector w, starting from the corresponding vector x;:

Z, =W'X,

The resulting z; is compared with z values corresponding to the centroids of classes; the
object will be related to the class whose centroid is closest to its projection.
As an example, if two classes are present the new object will be related to Class 1 if:

or, equivalently:

1

z. < —(z,+2,)

1

This relationship can be easily visualized in
geometrical terms by representing projections of —4 44T eeeve
objects on an horizontal line corresponding to the 1, _
direction of vector w, as shown in the figure on the _(Zl + ZZ)
right.

v

[\




If a previously described dataset is re-considered and the output of LDA is shown:

25— | 25~ z
20— . k. 20—
151- i-... 1 151+
X2 Y X
10 > ool ® 101~
nr‘
5 Of. 51—
ob—L 1 | | | ;w |
0 5 10 15 20 25 —— 0 15 20 25
X3 3 3[15 7.074 X,
10.85

T e X

The following values are obtained for class centroids projections:

z =3.15 z,=10.85

Since the average value of the two centroids projections is equal to 7.0, a new object will be
assigned to Class 1 if its projection is lower than 7.0, otherwise it will be assigned to Class 2.



Linear Discriminant Analysis (LDA) with more than two classes

When more than 2 classes are involved in LDA (k > 2) k-1 projection vectors w;, arranged in
columns in a projection matrix W, are considered:

T
Z=W X

In this case within-class, S, and between-class, Sg, scatter matrices are defined as follows:

k

Ik
SIT':zsn'i:ZZIEG(K_IHiXX—ﬂi)T o\
i=1 '

i=1

where W, is a vector containing the co-ordinates
of the i-th class centroid.

i
SB:ZSEi:

=1 i

k
N (u; - )\t Sws
2 (Hi -1\ pi-u) /

where p is a vector containing the co-ordinates
of the centroid of class centroids. v

M
W
A 4

In the figure S,,. matrices, contributing to S,,, and Sg matrices, contributing to Sg, are
represented in geometrical terms for a system including three classes and based on two
variables.



The corresponding scatter matrices for projections are:

gﬁ'_ — ZZ:EC} (Z _Eixz _Ei)T Where: zi :F -l Z

By analogy with LDA involving two classes, the following equations can be written:
Ss|  [W'S,W

Sy =W'S W
S| W

S, =W'S, W

J(W) =

In this case determinants of scatter matrices need to be calculated.

The optimal projection W can be obtained using an eigenvalue equation:

S,S;W=AW



If three classes are considered (k = 3), two of the three possible eigenvalues are different
from zero.

The largest eigenvalue, A,, is considered first and the corresponding eigenvector (w,), and
then also the first linear discriminating function, that is the one providing the better
separation of classes, are obtained.

The second eigenvalue, A,, lower than A,, is considered subsequently, thus eigenvector w,
and the second linear discriminating functon are obtained.

It is worth noting that a further constraint has to be introduced when calculating w,, since w,
and w, must be incorrelated.

A graphical representation referred to a
system including three classes and based
on three variables is reported in the
figure on the right.

In this case three-dimensional classes
are projected onto planes, whose
normals are represented by vectors w,
and w,.

As apparent, a better distinction
between classes is observed on the
plane normal to w;.




A numerical example of LDA with three classes performed with Minitab 18

Let us re-consider the dataset referred to apple juices described by concentrations (g L?)
found for four carbohydrates, divided into three classes:

Variety Sucrose Glucose Fructose Sorbitol
A 20 & 40 4.3
A 27 11 49 2.9
A 26 10 47 2.5
A 34 5 47 2.9
A 29 116 [ 40 | 7.2
B | 6 26 49 3.8
B 10 22 47 3.5
B 14 21 51 6.3
B 10 20 49 3.2
B 8 19 49 3.5
C 8 [ 17 55 | 3.3
C 7 21 59 3.3
G 15 20 68 4.9
L 14 19 74 5.6
G 9 15 57 54

The problem to be solved using LDA is classifying an apple juice containing 11, 23, 50 and 3.9
g L'! of sucrose, glucose, fructose and sorbitol, respectively.



As an example of software application, Minitab 18 has been used to perform LDA, which can
be assessed using the following path: Stat > Multivariate > Discriminant Analysis....

|| Minitab - Untitled
File Edit Data Calc | Stat Graph Editor Tools Window Help Assistant
= | !EE| Basic Statistics » | @0 ‘ ] O [ [ £ D
‘ j Regression 3 L| | “ T O\ o
I ANOVA >
L[ Session DOE N
Control Charts 4
Quality Tools 4
Reliability/Survival 2
Multivariate » E Principal Components...
Time Series » |§ Factor Analysis...
Tables ’ E Item Analysis...
MNonparametrics » _
Equivalence Tests X ;5,'] Cluster Dbt-;ervatmns...
Power and Sample Size > ,.,—,.,j] Cluster Variables..
@~ Cluster K-Means...
|; Discriminant Analysis...
"/_‘\.L Simple Correspondence Analysis...
Z Multiple Correspondence Analysis... -




In this case, a column of the Worksheet, usually the first, is used to indicate classifications of
samples in the training set. The other columns are used for variables:

[ Worksheet 1+ Discriminant Analysis X

+ C1-T C2 c3 Cc4 =5

Classes @ Sucrose Glucose  Fructose Sorbitol C1  Classes Groups: |C|35595
1 A 20 6 40 43 g gi-luccrc? :EE Predictors:
2 _|A 27 1 49 29 c4 Fruc’;nse Sucrose-Sorbitol
3 A 26 10 47 2.5 C5  Sorbitol

C7  Sucr Unk

4 A 34 5 47 2.9 8  Gluc Unk
5 |A 29 16 40 7.2 C9  Fruc Unk
6 B 6 26 49 38 C10 Sorb Unk Discriminant Function [v Use cross validation
7 B 10 22 a7 35 (@ Linear (" Quadratic
8 B 14 21 51 6.3 Storage
9 B 10 20 49 3.2 Linear discriminant function:
10 B 8 19 49 3.5
1 |C 17 55 5.3
12 |C 7 21 59 3.3
13 C 15 20 68 4.9 | | Fits I
14 |C 14 19 74 5.6
15 C 9 15 57 54 Help Options... oK Cancel ‘

The Discriminant Analysis window is used to select the column indicating classifications in the
Groups box, whereas columns referred to variables are selected for the Predictors box.
The program enables the choice between Linear and Quadratic Discriminant Analysis.

Note that four further columns (from C7 to C10) have already been prepared and named as
Sucr/Gluc/Fruc/Sorb Unk, since they will be used to enter variables for unknown samples.



The first information obtained as output, included in the
Session window of the Minitab software, is the summary
of samples belonging to the three classes (groups) and
then the confusion matrix.

As apparent, 100% of correct classifications was obtained
in the specific case, since all 15 samples were classified in
the originally proposed classes.

Several further results can be found in the Session window:

Groups
Group il E C
Count 5 5 5

Summary of Classification

True Group
Put into Group A B C
A 5 0 0
B 0 3 0
C 0 o 3
Total N 3 3 3
M correct 5 5 ]
Proportion 1.000  1.000 1.000

Correct Classifications

N Correct  Proportion

15 15 1.000

Squared Distance Between Groups Group Means

A E C Poolad Means for Group
A 00000 503433 88.4046 Variable  Mean A B C
B 503433  0.0000 15.8055 Sucrose 15800 27.200 9.600 10.600
C 884046 158055  0.0000 Glucose 16533 9600 21.600 18.400

Fructose 520687 44600 45000 62.600
Sorbitol 43087  3.9600 4.0600 4.9000

Group Standard Deviations

Pooled stDev for Group

Variable StDev A B

C

Sucrose 3992 5070 2966
Glucose 3.286 4393 2702
Fructose 5342 4273 1414
Sorbitol 1441 1836 1.270

3.647
2.408
8.081
0.930




Covariance matrices for each class, that can be used to generate the corresponding scatter
matrices through multiplication by the number of degrees of freedom, are also reported in
the Session window (note that some values are missing since they are identical to
symmetric values with respect to the main diagonal of matrices):

Covariance matrix for Group A Covariance matrix for Group B Covariance matrix for Group C

Sucrose  Glucose  Fructose  Sorbitol Sucrcse  Glucose Fructose  Sorbitol Sucrose  Glucose  Fructose  Sorbitol
Sucrose 257000 Sucrose 8.8000 Sucrose  13.3000
Glucose 1.3500  19.3000 Glucose  -3.7000 7.3000 Glucose 2.2000 5.8000
Fructose  9.3500 -4.2000 183000 Fructose  2.0000 -0.5000 2.0000 Fructose 260500 89500 653000
Sorbitol  -0.4650 55800 -6.7950 3.7480 Sorhbitol 2.7800 0.0200 1.4000 1.6130 Sorbitol 1.5750 -1.5000 1.9750 0.8650
An important result is also the Summary of Classified Observations
. e . ﬁ
Summary of Classified Observations, Tue  pred [ -val Squared Distance  Probability
that indicates the True group (the Observation Group Group |Group |Group Pred  X-val Pred X-val
one declared), the Predicted Group A AL A ‘: 4?2?‘; i;:ig ;Eg ;Eg
and the Cross Validated _(X-val) c 70267 7408% 000 000
Group for each sample in the 2 A A A 1511 2369 100 1.00
training set: B 42411 40045 000 0.00
C 77635 73594 000 0.00
14 C C A 125689 241252 000 0.00
_ B 39805 97238 000 000
The table enables an evaluation of C 6167 24702 100 1.00
the attribution of each sample to a E c C A 79784 74397 000 000
e B 16510 15410 000 000
specific class. . )
P C 2268 4252 100 1.00




Minitab 18 also provides the so-called Classification Functions (Linear Discriminant Functions,
in the specific case), one for each of the classes. They are used for the classification of

unk

nown samples.

In particular, the general form of a Classification Function in Minitab is:

C

Values obtained for coefficients Ci1s Cizsr Cio for each
class in the specific case are reported in the table

j

shown on the right.

=c X, tc Xy +...+c, X +c

Linear Discriminant Function for Groups
A B C

Constant -44.19 -74.24 -114.01

sucrose 039  -1.60 -2.50

Glucose 042 1.21 0.54

Fructose 1.46 2.53 3.48

Sorbitol 219 339 5.48

The assignment of a new sample to one of the classes is achieved by introducing the
corresponding values of variables into classification (linear discriminant) functions:

In the specific case, the maximum value (score) is obtained from the function referred to

Group A: —44.19 + 0.39 x[11]+ 0.42 x[23 + 1.46 x[50+ 2.19 x[3.9]= 51.301
Group B: —74.24 — 1.66 x[11]+ 1.21 x[23 + 2.53 x50+ 3.59 x[3.9]= 75.831
Group C: ~114.01 - 2.5 x[11f+ 0.54 x[23 + 3.48 x[50| + 5.48 x[3.9)= 66.282

Group B, thus the new sample is classified in this group.




The assignment of one or more new samples to classes can be made automatically using the

Minitab 18 software.

First, values of variables referred to new samples are introduced in appropriate columns,
different from those including values of variables for samples in the training set:

[ Worksheet 1

+ c1-T Cc2 C3 c4 Cs Cc6
Classes | Sucrose | Glucose | Fructose | Sorbitol
1 |A 20 6 40 4.3
2 |A 27 11 49 2.9
3 |A 26 10 A7 2.5
4 A 34 5 A7 2.9
5 [A 29 16 40 7.2
6 B 6 26 49 3.8
7 B 10 22 47 3.5
8 B 14 21 51 6.3

c7 Cc8

c9 c1o

11 23

Sucr Unk | Gluc Unk | Fruc Unk |Sorb Unk
50 39

Those columns have to be indicated in the «Predict

group membership for:»

box

included

Discriminant Analysis: Options window:

in the

Help

Discriminant Analysis: Options X

Prior probabilities: | |

Predict group membership for:
C7-C10

—/

Display of Results

(~ Do not display

(" Classification matrix

(~ Above plus Idf, distances, and misclassification summary
(~ Above plus mean, std. dev., and covariance summary

(@ Above plus complete classification summary

o]

Cancel




Once the calculations are performed by the program, a specific table (Prediction for Test
Observations) will appear at the end of the Session Window:

Prediction for Test Observations
Squared
Observation Pred Group From Group Distance Probability
1 B
A 43.953 0.000
E 0.460 1.000 |
C 19.181 0.000

The new sample (Observation) will be labelled with the number of the worksheet row in
which the corresponding values for variables are reported (row #1 in the specific example).

The Predicted Group is B, in accordance with calculations shown before, based on Linear
Discriminant Functions.

The probability of this assignment, reported in the last column of the table, is related to the
squared distance of the new sample from the centroids of the three groups.

In the specific example, the differences between distances are so large that the probability of
assignment to Group B is 1 (100%). In other cases, the assignment is made to the class
(group) for which the probability is higher.



Other statistical programs provide further interesting information on LDA in their output. As
an example, Statgraphics also provides eigenvalues related to linear discriminant functions

In the case of Statgraphics, values of variables referred to eventual new samples to be
classified are introduced in the same worksheet columns used for samples in the training
set but the box referred to the classification is obviously left blank:

iz apple juice.sfé6

sSucrose glucose fructose sorbitol variety
Ppm ppm Ppm ppm

1 20 6 40 4,3 R
2 27 11 49 2,9 h
3 26 10 47 2,5 1
4 34 5 47 R
5 .29 16 40 7,2 A
6 6 26 49 3,8 B
7 10 22 47 3,5 B
8 14 21 51 6,3 B
9 10 20 49 3,2 B
10 & 19 49 3.5 B
11 8 17 55 5,3 C
12 1 21 59 3,3 C
13 15 20 68 4,9 C
14 14 19 14 5,6 C
15 9 15 57 5,4 C
16 11 23 50 3,9




Once calculations are completed, a classification table is reported in the program’s output:

Actual | Highest |Highest |Squared 2nd Highest |2nd Highest |Squared
Row |Label |Group |Group |Vaiue |Distance |Prob. |Group Value Distance | Prob.

1 A A 323158 |1,80646 |1,0000 |B 15,1536 37,1307 |0,0000
2 A A 417127 |0453413 |1,0000 |B 27,2629 413529 |0,0000
3 A A 43,1071 0231369 |1,0000 |B 21,2304 439854 |0,0000
4 A A 449776 551544 |1,0000 |B 333119 88,2082 |0,0000
5 A A 45,8687 |1,35416 1,0000 |B 22,6454 49,2007  |0,0000
6 B B 835054 273056 |09998 |C 75,2009 19,3396 |0,0002
7 B B 652984 |0,82146 |1,0000 |C 54,4361 23,746 |0,0000
g B B 78,1962 |1,42734 |0,9937 |C 73,1415 11,5367 |0,0063
9 B B 674658 |0,215585 |09998 |C 58,6673 178126 |0,0002
10 B B 70,6632 |0,276813 |0,9973 |C 64,7694 12,0643 |0,0027
11 C C 944142 |0,737153 |098%4 |B 89,8755 921468 |0,0106
12 C C 102039 |252863 093% |B 96,2951 831619 |0,0604
13 C C 121,563 |0,131827 |0,9997 |B 113,272 16,7144  |0,0003
14 C C 143,225 |503286 |1,0000 |B 131,406 33,6706 |0,0000
15 C C 983358 |0,43643 |09992 |B 01,2148 146785 |0,0008
16 B 744584 |0,133832 |0,9999 |C 65,1024 12,3459 |0,0001

As evidenced in row #16, the unknown sample is classified primarily in Group B (probability =
0.9999), due to the value assumed by the corresponding linear discriminant function
(Highest value).

The program also reports the second possible assignment (2nd Highest Group) and the
corresponding probability (0.0001).

Notably, slight (not significant) differences can be observed between Minitab 18 and
Statgraphics in terms of values referred to classification functions and/or squared distances.
They are due to small differences in rounding off during calculations.



A plot of discriminant functions is also generated by Statgraphics:
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Centroids for different classes are also reported in the plot. Notably, (z,, z,) co-ordinates of
the unknown sample can be calculated by introducing standardized values of their variables
into linear discriminant functions:

Z, = -1.090x(-0.221) -0.1092 x1.23 - 0.4645 x(-0.2897) + 1.227 x(-0.525) = -0.40
Z, = 0.7414x(-0.221) -0.8295 x1.23 + 0.5028 x(-0.2897) - 0.037 x(-0.525) = -1.31

Based on these co-ordinates, the point referred to the unknown sample clearly appears
closer to points related to Class B, thus confirming the previous assignment.



Limitations of Linear Discriminant Analysis (LDA)

Three major limitations can be described for LDA:

1)

2)

LDA produces at most k-1 feature projections, when k classes are considered. If
classification error estimates establish that more features are needed, other methods
must be employed to provide additional features;

LDA is a parametric method. It data distributions are significantly non-Gaussian, LDA
projections may not preserve the complex structure included in data needed for
classification:

[o (:)




3) LDA will also fail if discriminatory
information is embedded in the
variance of data, rather than in the
mean.

In this case PCA is expected to be more
effective than LDA.




A comparison between LDA and PCA

As an example of comparison between LDA and PCA, the recognition of coffee odour will be
considered.

Odour released from five varieties of coffee beans, Sulawesy, Kenya, Arabian, Sumatra and
Colombia, was analyzed using an array consisting of 60 gas sensors. 45 analyses were
performed for each variety.

In the figure shown on the right
readings obtained for all
samples by each of the 60
sensors are represented as
continuous lines with different
colors.

Sensor response




The comparison between 3D-scatter plots obtained using PCA and LDA clearly shows that
LDA was more effective in separating the five coffee beans varieties:

PCA

LDA

7.32

axis 1

This is an example of a system in which discriminatory information is not aligned with the
direction of maximum variance.



Chemometrics based on the MetaboAnalyst web-based platform

The MetaboAnalyst platform is freely accessible at the web address metaboanalyst.ca

6.0 Meta boAnaIyst 6.0 - from raw spectra to biomarkers, patterns, functions and systems biology

News & Updates

Home
Registration is now open for our . Early bird discount ends on June 15, 2025; %%
Data Formats Fixed the gene name mapping issue for C. elegans in joint-pathway analysis (05/05/2025) 2% ;
Tutorials Enhanced Dose Response Analysis module to support general regression analysis between metabolic features and continuous responses (04/18/2025) &3%;
Improved error messages during SNP harmonization in Causal Analysis module (04/15/2025) 8% ;
User Forum Added support for multi-group data in biomarker analysis module (02/12/2025);
MetaboAnalystR Users can perform Pathway Analysis and Joint Pathway Analysis for 136 organisms for targeted or untargeted metabolomics data (01/10/2025);
Enhanced biplot visualization for PCA and PLS-DA analysis (12/16/2024)
Publications Enhanced support for lipid name mapping based on KEGG annotation (11/06/2024);
Update History Read more .....
Databases

APls here to start

Module Overview

Input Data Type Available Modules (click on a module to proceed, or scroll down to explore a total of 18 modules including utilities

LC-MS Spectra
(mzML, mzXML or mzData)

MS Peaks

(peak list or intensity table)

Generic Format

(.csv or .txt table files) Blomarker Ana a a eta-ana Dose Response Ana

Annotated Features

(metabolite list or table)

Link to Genomics & ausal Ana
Phenotypes endelia

(metabolite list) ando atio




If data have been already processed and values of variables are thus known, a txt or an Excel
csv (comma-separated values) file, with samples reported in rows, are the simplest files that
can be used as input, selecting «Concentrations» as the Data Type:

Please upload your data

ﬁplain text file (.txt or .csv): @ \

Data Type: 0 Concentrations Spectral bins Peak intensities

Upload

Processing

Normalization Format: Samples in rows (unpaired)

A4
Statistics k Data File: + Choose )
Download
. A compressed file (.zip): 9

Exit

Data Type: 0 NMR peak list MS peak list

Data File: + Choose

c | b | E

A ] B ] ] F ] G Il H ] | ]

Sample Number Sample type ~ 281.2478 255.2323 279.2322 295.227 253.217 277.217 313.238

1 wild-type 14.23357 25.22179 2.00511 2.737188 5.102289 0.944709 1.821321

2 wild-type 17.44554 23.61866 1.819832 3.036436 5.527837 0.93008 2.066472

3 wild-type 17.47118 27.63773 1.777519 3.107297 5.625143 0.996083 2.006392

: H 4 wild-type 18.84249 23.5063 1.886507 3.394122 5.061856 0.920076 2.135716

Pa rt Of the dataset adopted, InCIUdlng 5 wild-type 15.00194 23.22418 2.076255 2.95843 4.976105 1.118026 1.903074
SpeCtral intensities Obtained for- 30 6wi|d-type 12,7512 30.28206 1.908383 2.273857 6.334425 1.118004 1.423481
7 wild-type 13.65598 20.95872 1.858636 2.355915 4.443018 1.239853 1.296301

fatty acid ions (m/z Values are 8 wild-type 16.61169 23.34575 1.852342 2.608314 5.365115 1.152143 1.744407
. . . 9 wild-type 15.32911 19.0413 2.124511 2.304715 3.764959 1.348352 1.654135
|ndlcated 18] the Columns) referred to 10 wild-type 15.07204 25.55745 2.192229 2.606511 4.547116 0.997745 1.635876
. . 11 wild-type 16.46733 21.21967 2.656335 2.599264 3.92061 1.555587  1.7348

26 Wlld and 25 farmEd Canadlan 12 wild-type 17.89331 22.19917 2.347418 2.730731 4.798052 1.32717 2.421233
I I 13 wild-type 12.43089 30.96677 1.724293 2.896892 4.941796 0.783904 1.861966
salimon Samp €s. 14 wild-type 19.33922 23.6542 1.926951 3.080187 6.094779 1.195816 2.22795




Summary of the data integrity check performed by Metaboanalyst:

Data Integrity Check:

* Checking sample names - spaces will replaced with underscore, and special characters will be removed;
* Checking the class labels - at least three replicates are required in each class.

* The data (except class labels) must not contain non-numeric values.

* |f the samples are paired, the pair labels must conform to the specified format.

* The presence of missing values or features with constant values (i.e. all zeros).

( Data processing information: \
Checking data content ...passed.
Samples are in rows and features in columns
The uploaded file is in comma separated values (.csv) format.
The uploaded data file contains 51 (samples) by 30 (compounds) data matrix.

Samples are not paired.

G groups were detected in samples. J

Only English letters, numbers, underscore, hyphen and forward slash (/) are allowed.

All data values are numeric.
A total of 0 (0%) missing values were detected.

By default, missing values will be replaced by 1/5 of min positive values of their corresponding variables

Click the Proceed button if you accept the default practice;

Or click the Missing Values button to use other methods.




Overview of the available normalization/transformation/scaling approaches:

Normalization Overview:
The normalization procedures are grouped into three categories. You can use one or combine them to achieve better results.

® Sample normalization is for general-purpose adjustment for systematic differences among samples;
* Data transformation applies a mathematical transformation on individual values themselves. A simple mathematical approach is used to deal with negative values in log and square root (FAQs
#14)

* Data scaling adjusts each variable/feature by a scaling factor computed based on the dispersion of the variable.

Sample normalization

O None

Sample-specific normalization (i.e. weight, volume) Specify
Normalization by sum

Normalization by median

Normalization by a reference sample (PQN) Specify
Normalization by a pooled sample from group (group PQN) Specify
Normalization by reference feature Specify

Quantile normalization (suggested only for > 1000 features)

Data transformation

O None

Log transformation (base 10)
Square root transformation (square root of data values)

Cube root transformation (cube root of data values)

Data scaling

O None

Mean centering (mean-centered only)
Auto scaling [mean-centered and divided by the standard deviation of each variable)
Pareto scaling (mean-centered and divided by the square roct of the standard deviation of each variable)

Range scaling ([mean-centered and divided by the range of each variable)




In this case data were
subjected to autoscaling, since
there were significant
differences between variables
values.

By clicking on the «View
results» button, box and
whisker plots are shown for
each variable before and after
normalization.

Density

Before Mormalization
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Concentration

After Normalization
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Mormalized Concentration




After data normalization, many different types of elaborations can be selected:

Select an analysis path to explore :

Univariate Analysis

Fold Change Analysis T-tests Volcano plot
One-way Analysis of Variance (ANOVA)

Correlation Heatmaps Pattern Search Correlation Networks (DSPC)

Advanced Significance Analysis

Significance Analysis of Microarray (and Metabolites) (SAM)

Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

(Chemometrics Analysis \

Principal Component Analysis (PCA)

Partial Least Squares - Discriminant Analysis (PLS-DA)

Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)

Orthogonal Partial Least Squares - Discriminant Analysis (orthoPLS-DA)

Cluster Analysis

Hierarchical Clustering: Dendrogram Heatmaps

k Partitional Clustering: K-means Self Organizing Map [SOM) )

Classification & Feature Selection
Random Forest

Support Vector Machine (SVM)




Once PCA is selected and Principal Component Analysis (PCA)
performed, all possible
combinations of bi-
dlmens!onal_ score F_)IOts Can Display pairwise score plot for top 5\ PCs
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The Scree plot indicates absolute and
cumulative contributions of principal
components to the overall variance.

Here, values referred to the first five
principal components are shown:

Scree plot
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[PERMANOVA] F-value: 156.92; R-squared: 0.76204; p-value (based on 999 permutations): 0.001
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The Score plot obtained for the first two
principal components is integrated by ellipses
representing the 95% confidence areas
related to the two sample groups.

The PERMANOVA calculation evaluates the
significance of the separation between the
two groups.




0.4

By clicking on the point referred to a specific
variable, a new window is opened, reporting
box-and-whisker plots for the original and the
normalized (auto-scaled, in this case) values
of the variable.
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. An interactive Loading plot can be
visualized for each couple of principal
. components.
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Synchronized 3D plots, corresponding to
components, can be also visualized:

score and loading plots for three principal
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The two plots can be rotated contemporarily around different axes, to emphasize the
relationship between principal components and variables.

Each plot is also interactive, thus the number of the specific sample or the name of the
variable, according to the case, can be visualized by clicking on specific points.



A biplot can be also visualized for each couple of principal components, with arrows referred
to variables being reported with an appropriate scale and each sample represented by a
colored dot. Colored areas corresponding to different groups of samples are also drawn.
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Hierarchical Clustering Heatmaps can be obtained using Metaboanalyst, along with
conventional HCA dendrograms. In the following figure the settings adopted for the
elaboration of salmon fatty acids data are shown.

Hierarchical Clustering Heatmaps

A heatmap provides intuitive visualization of a data table. Each colored cell on the map corresponds to a concentration value in your data table, with samples in rows and features/compounds in columns. You can
use a heatmap to identify samples/features that are unusually high/low. The maximum number of features can be displayed is 2000 features (selected based on IQR by default). You can use Select features for

better control

Data source Normalized data
Standardization Autoscale features WV
Distance measure Euclidean

W Tips
Clustering method  Average

* Use Do not cluster samples to show the natural

Color contrast Default hv4 contrast ameong groups (with each group a block);
* To re-order or exclude groups, Data Editor =>

Group Editor

Show names  Fontsize: 8§

Column option Width: : © Use the up/down arrows on the left to

10
adjust orders
10 © Use the left/right arrows in the middle to
Row option Height: : O Show names  Fontsize: & exclude groups

* Use Display top # of features to focus on

0.02 patterns from important features;
Annotation bar Height: 0 ’ % Fontsize:  10.0

O

* |f feature names are too long:

> Reduce the font size;
View mode

O Overview Detail View (= 1000 features) > To give more space by unchecking color
{only for download) legend or annotation legend;
o Shorten names (in your Excel or editin
Do not cluster Samples WV Feature Details table from T-tests/ANOVA
result)
Use top 25 T-test / ANOVA W

Other view options
Show group annotation legend

Show only group averages




The heatmap resulting from salmon fatty acid data emphasizes the good clustering of farmed
and wild-type samples, and also the presence of a defined clustering of variables:
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In this case the conventional
dendrogram, performed only
for samples, enables a better
visualization of the relationships
existing between specific
samples:

= farmed
= wild-type
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The Metaboanalyst platform also includes some approaches to discriminant analysis based
on Partial Least Squares. One of the most popular, although sometimes can lead to
controversial results, is Partial Least Squares — Discriminant Analysis (PLS-DA).

In this case, the assignment of a sample to a specific class, which is a categorical variable, is
preliminarily coded into a numerical variable (like 0 and 1), leading to a vector vy if just two
classes are considered (in this case the algorithm is known as PLS1-DA), and to a matrix Y if
more than two classes are involved (algorithm PLS2-DA), as exemplified by the following
figure:
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In this case X is the matrix containing the values of variables for samples included in the

classes, with rows representing samples and columns representing variables, as usual.
Like in PLS regression, the algorithm searches for components arising from the original
variables accounting for a relevant portion of the covariance between X and y (or Y) and then

finds a regression model that can be used to predict the assignment of a new sample to one
of the classes.



The overview obtained for PLS-DA results using Metaboanalyst includes several options and
shows plots for couples of components that resemble PCA score plots, although their

meaning is different:

Partial Least Squares Discriminant Analysis (PLS-DA)
Overview 2D Scores Plot Loadings Plot Imp. Features Synchronized 3D Plots Cross Validation Permutation
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In the case of PLS-DA,
components are combination of
original variables ordered
according to their ability to
account for the covariance
between matrix X and vector
y/matrix Y.

However, the percentages
shown in the score plot for each
component still correspond to
the proportion of matrix X
variance accounted for by that
component. Consequently, it is
not impossible that component
2 accounts for a higher variance
with respect to component 1.

Scores Plot

Component 2 ( 5.9 %)

o farmed
o wild-type
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T T
0

[5,]

Component 1 ( 62.3 %)

Loading plots and synchronized 3D plots are reported by Metaboanalyst also for PLS-DA. In
this case loadings represent the contributions of variables to a specific component.




Further PLS-DA outputs are included in the Imp. Features link of the Overview menu:

O VIP score Comp.1 N/
Importance measure:
Coefficient score Overall  w
Update

Show top feature number: 15

Use grey scale color:

In particular, Variable Importance in Projection (VIP) scores are calculated for each variable
j, according to the following formula:

VIP] = >, w?, SSY; J/(SSYot.capl. F)

where J and F represent the total numbers of original and latent variables, respectively, szf
represents the weight of variable j on the latent variable f and SSY; and SSY,, ., represent,

respectively, the portion of y or Y variance explained by latent variable f and the variance
explained by all latent variables.



It is common to assume as a
threshold a VIP value larger
than 1 (i.e., larger than the
average of squared VIP
values), which means that a
selected variable will have an
above average influence on
the model explaining
response Y.

Alternative threshold values
include lowering the
threshold to 2/3 or
considering the average of
VIP values.

In any case, the number of
variables (features) for which
VIP scores are calculated can
be increased by the analyst by
changing the number of top
features to show.
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The VIP scores plot generated by Metaboanalyst also includes qualitative information on the
values of a specific variable in the classes under comparison, based on a color scale.
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