
The quality of analytical measurements

In almost all applications of analysis the results obtained are supplied to a customer or user, 
thus the latter should be satisfied as much as possible with the quality – the fitness for 
purpose – of the measurements. 

This has many important implications for analytical practice:

1) any assessment of the measurement errors must take into account the whole analytical 
process – including the sampling steps, which often contribute to the overall error 
significantly.

2) the performance of the analyses undertaken in each laboratory must be checked 
internally on a regular basis, usually by applying them to standard or reference materials.

3) in many application areas the results from different laboratories must be compared with 
each other, so it can be assessed if the performance of the laboratories meets statutory, 
regulatory and other requirements. 

4) the analytical results must be supplied with a realistic estimate of their uncertainty



If a laboratory has to produce analytical results of a quality acceptable to its customers and 
perform well in proficiency tests or collaborative trials, it is obviously essential that the 
results obtained show excellent consistency from day to day. 

Quality control methods are statistical techniques developed to show whether time-
dependent trends are occurring in the results, together with inevitable random errors.

As an example, let us suppose that a laboratory uses a chromatographic method for 
determining the level of a pesticide in fruits or vegetables. The results may be used to 
determine whether a large batch of fruit/vegetable is acceptable or not, and their quality is 
thus of great importance. 

The performance of the method will be checked at regular intervals by applying it, with a 
small number of replicate analyses, to a standard reference material (SRM), whose pesticide 
level is certified by a regulatory authority. 
Alternatively, an internal quality control (IQC) standard of known composition and high 
stability can be used. 

The SRM or IQC standard should be inserted at random into the sequence of materials 
analyzed by the laboratory, so that they are analyzed using exactly the same procedures as 
those used for the routine samples. 

Quality control methods



The known concentration of the pesticide in the SRM/IQC materials is the target value for 
the analysis, µ0. 
The laboratory needs to be able to stop and examine the analytical method if it seems to be 
giving erroneous results. 

On the other hand, resources, time and materials would be wasted if the sequence of 
analyses was halted unnecessarily, so quality control methods should allow its continued use 
as long as it is working satisfactorily. 

Quality control methods are also very widely used to monitor industrial processes.

For example, the weights of pharmaceutical tablets coming off a production line can be 
monitored by taking small samples of tablets from time to time. 

The tablet weights are bound to fluctuate around the target value µ0 because of random 
errors, but if these random errors are not too large, and are not accompanied by time-
dependent trends, the process is under control.

Control charts are one of the approaches adopted to monitor an industrial process or the
performance of an analytical method.



Shewhart charts for mean values

Over a long period, the population standard deviation, σ, related to the concentration of a 
target analyte which is the object of quality control, will become known from experience. 

For this reason, the confidence interval on the mean value of that concentration can be 
expressed according to Case 1 situation, thus using coefficients related to the N(0,1) 
distribution:

95% confidence                                                      99.7% confidence

Note that, for the sake of simplicity, actual values to be multiplied by sampling standard 
deviation, i.e., 1.96 and 2.97, for 95 and 99.7% confidence, respectively, are usually rounded 
to 2 and 3.

The equations reported above are exploited in the construction of one of the most common 
types of control chart, the Shewhart chart, introduced by the American statistician, 
mathematician and physicist Walter Andrew Shewhart in 1924.



The vertical axis of a Shewhart chart displays 
the process mean, whereas the horizontal axis 
represents time.

The target value, μ0, is marked by a horizontal 
line. 
The chart also includes two further pairs of 
horizontal lines: those located at μ0 ± 2σ/√n are 
called the upper/lower warning lines, whereas 
those drawn at μ0 ± 3σ/√n are called the 
upper/lower action lines.

Mean values obtained for the analyte under 
control are plotted in the chart as points.

The probability for a specific value to be found outside one of the action lines when the 
process is in control is known to be only 0.3%, i.e., once in 370 samples, so, in practice, the 
process is usually stopped and examined if that deviation occur for less samples.

On the other hand, there is a probability of ca. 5% (0.05) of a single point falling outside a 
warning line (but being still within the action lines) while the process remains in control. 
This outcome alone would not cause the process to be stopped, but if two successive values 
fell outside the same warning line, the probability (0.0252 × 2 = 0.00125, for both warning 
lines) would be so low that the process would be judged to be out of control.



Two possible explanations can be hypothesized if a Shewhart chart for mean values suggests 
that a process is out of control:

1) the process mean has changed
2) the process mean has remained unchanged but the variability in the process has 

increased

If the actual variability is increased, action and warning lines, based on the previous, lower, 
estimate of variability, are artificially located closer to the target line, thus significant 
changes in the mean value are deduced when in fact they do not occur.

Conversely, if the variability of the process is decreased (i.e., improved) with respect to the 
one used to draw action and warning lines, the latter become artificially more distant from 
the target line, thus allowing real changes in mean value to go undetected. 

A careful monitoring of process variability must thus be planned. 

This procedure also has its own intrinsic value: the variability of a process or analysis is one 
measure of its quality, and, in the laboratory context, it is directly linked to the repeatability 
(within-laboratory standard deviation) of the method.



The variability of a process can be 
displayed by plotting another 
Shewhart chart, involving the range, R 
(highest value - lowest value), of each 
of the samples taken.

A typical Shewhart control chart for 
the range is shown in the figure on 
the right.

The general format of the chart is the 
same used in plotting mean values, 
with a line representing the target 
value, and pairs of action and warning 
lines. 

The most striking difference between the two charts is that the pairs of lines are not 
symmetrical with respect to the target value for the range, R. The target value of R can be 
calculated as the product between σ and a constant, d1, that can be found in appropriate 
statistic tables, like the one reported in the next slide, including also values of constants a1, 
a2, w1 and w2, required for the calculation of action and warning lines, once R is known.



Adapted from: H.R. Neave, Elementary Statistics tables, Routledge, 1979, pp. 55-57 



It is worth noting that the establishment of a proper value for σ is very important for a 
correct drawing of Shewhart charts, thus its estimate should be based on a substantial 
number of measurements. 

However, in making such measurements, the same problem, i.e., distinguishing a change in 
the process mean from a change in the process variability, must be faced. 
If σ is calculated directly from a long sequence of measurements, its value may be 
overestimated by any changes in the mean that occur during that sequence.

The solution to this problem is to take a large number of small samples, measure the range, 
R, for each of them, and then determine its mean value.
This procedure ensures that only the inherent variability of the process is measured, with 
any drift in the mean values eliminated. The mean value of R can subsequently be used to 
determine the action and warning lines for the range control chart. 

Moreover, the warning and action lines for the control chart for the mean can be 
determined, respectively, from the mean value of x by adding/subtracting the products 
between the mean value of R and constants W and A reported in the table shown in the 
previous slide:



A numerical example

An internal quality 
control standard 
with an analyte 
concentration of 
50 mg kg−1 was 
analyzed in a 
laboratory for 25 
consecutive days, 
the sample size 
being four on each 
day. 

The results are 
reported in the 
table on the right:



The resulting Shewhart chart for the IQC mean value is the following:

A first examination of results indicates that, over the 25-day period of the analyses, the 
sample means are drifting up and down. Indeed, sample means from days 3–15 are greater 
than the target value of 50, whereas four of the next six means are below the target value, 
and the last four are all above it again. 

These are the circumstances in which it is important to estimate σ using the method 
described above. Based on R-values reported in the last column of data table, the mean 
range is found to be 4.31, whereas d1, for n = 4, is equal to 2.059. Consequently, σ = 
4.31/2.059 = 2.09.
Interestingly, the standard deviation of all the 100 measurements, treated as a single 
sample, is 2.43. If this value was used for σ, an overestimation would occur because of the 
drifts in the mean.



The control chart for the mean has then been plotted with the aid of equations shown 
before, using constants W = 0.4760 and  A = 0.7505, leading to warning and action lines 
located at 50.00 ± 2.05 and 50.00 ± 3.23, respectively.

The chart shows that the process mean is not under control since several of the points fall 
outside the upper action line.

Using equations shown before, the Shewhart chart for the range can also be generated:

As apparent, with one exception, all the values of ranges lie well within the warning lines, 
thus indicating that the process variability is under control.



Using Minitab 18 to draw Shewhart control charts

Different types of control charts can be drawn by accessing the Stat > Control charts  
pathway in Minitab 18. In particular, Shewhart charts can be drawn by accessing sub-menus 
Variable charts for subgroups/individuals. When several replicates are available for each 
determination, as in the example shown before, the Variable charts for subgroups menu has 
to be used:

If control charts for mean and range are required, the Xbar-R… option has to be used. The 
option Xbar-S… is used to obtain charts for mean and standard deviation, whereas Xbar…, R… 
and S… are used for charts referred singularly to mean, range and standard deviation.



When subgroups are present, each row in the worksheet represents a group of replicates and  
columns including replicates have to be indicated, along with the specification “Observation 
for a subgroup are in one row of columns”, in the window selected for control chart drawing:

The Xbar-R Options… option has to be selected to indicate specific settings for the control 
chart. 



In particular, the Parameters sub-menu can be used to set mean and standard deviation 
values, if the user does not want Minitab to estimate them.
In the present example, a mean equal to 50 was indicated, as in the calculations shown 
before, whereas the standard deviation box was left blank, thus it was calculated by Minitab:

In the Limits sub-menu the display of additional limits in the control chart can be selected.
As a default setting, action lines are drawn by Minitab 18 by considering a difference from the 
mean value of ± 3 standard deviations. However, as shown in the figure, additional lines, 
namely warning lines, can be drawn at a ± 2 standard deviations distance from the mean.



In the Tests sub-menu several different 
types of tests on data can be selected.

As a default setting, a test evaluating if 
the response at one point goes beyond 
the limit represented by a K standard 
deviations distance from center line is 
performed by Minitab 18.

As shown in the figure, the default value 
for K is 3, thus meaning that the upper or 
lower action lines are considered as limits 
for the test.
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Xbar-R Chart of C1; ...; C4

At least one estimated historical parameter is used in the calculations.

After calculations are performed, two graphs, showing Shewhart control charts for the 
sample mean and range, respectively, are obtained:

The note reported below the two graphs reminds the user that an estimated historical 
parameter, i.e., the mean, in the specific case (50), was adopted.



It is worth noting that Minitab calculates the warning and action lines for the range by 
approximating the asymmetrical distribution of the mean range by a normal distribution, 
thus a slight difference can be observed with calculations based on tables shown before.

Critical points, located outside action lines (indicated as UCL and LCL by Minitab 18), are 
drawn in red color. Their number in the list of subgroups is indicated in the summary 
reported in the Session window:



Average run length (ARL) and Cumulative Sum (CUSUM) charts

An important property of a control chart is the ability to detect any change in the process 
mean as soon as possible. The average number of measurements required to detect any 
particular change in the process mean is called average run length (ARL). 

Notably, since the positions of the action and warning lines on a Shewhart chart for the 
process mean depend on the value of sampling standard deviation, σ/√n, the ARL for that 
chart will depend on the size of the change in the mean compared with the latter.

A larger change will thus be detected more rapidly than a smaller one and the ARL will be 
reduced by using a larger sample size, n. 

As calculated before, the average run length for a process under control would be ca. 370 if 
action lines are located at a 3 σ/√n distance from the target line. This value is indicated with 
the symbol ARL0.

The calculation of the expected ARL when the system goes out of control, that is indicated as 
ARL∆, is more complicated.



First, let us define β the probability that the chart does not indicate a deviation despite the 
fact that the process is out of control. 

Consequently, 1-β is the probability that a deviation is indicated by the control chart when 
the process is out of control. This probability corresponds to the probability of discovering 
the deviation in just one measurement, the first of the run.

If two measurements were required, the first of them would be unable to discover the 
deviation, then the second would discover it, thus the probability would be: β ∗ (1-β). 
By analogy, if k measurements were required, the probability would be βk-1 ∗ (1-β). 

In other words, a probability can be associated to the number of measurements, i.e., the 
run length (RL), required to discover the deviation (k), thus the expectation for the RL can be 
calculated, using the formula of expectation for a discrete random variable:
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The sum reported in the equation corresponds to the series 1 + 2β + 3β2 +…, which is the 
MacLaurin series expansion of function 1/(1-β)2.

Consequently: E(RL) = 1/(1-β).

Let now suppose that a negative deviation
corresponding to 1 σ/√n (-1SD) occurs for
the mean with respect to the value found
when the process is in control:

β =  Φ(4) – Φ(- 2)  ≅ 1 – 0.0228 = 0.9772

The calculation for β, considering the 
previously set action lines (LAL/UAL), 
which are constant, but the new mean, 
can be described graphically, as shown in 
the figure on the right.

LAL UAL

+ 4SD

If the process was in control, the gaussian PDF would be centered on the correct mean 
value and would thus correspond to the black curve, with a 99.7% of probability of finding a 
measurement comprised between the action lines. However, the actual gaussian PDF is now 
the light blue one, thus the calculation of β is the following:

97.72%



Consequently: E(RL) = 1/(1-0.9772) = 43.86.

Almost 44 runs would then be required, as an average, to discover a deviation of the mean 
by 1 σ/√n. 

This delay in the recognition of a deviation from a target value inherent to Shewhart charts 
can be quite problematic if the target value is referred, for example, to a potentially toxic 
analyte analyzed in a food matrix or to an impurity in a drug. 

A possible solution is represented by the use of a different control chart, the so-called 
cusum (cumulative sum) chart, in which the cumulation of deviations is considered. 



As an example, let us consider the following data table and the corresponding Shewhart
control chart for the mean:

A progressive deviation from the target value (80) is clearly observed in the Shewhart chart,
yet the observed value reaches the lower warning line only after 15 measurements (which
could correspond to as many days).

On the other hand, if the difference between sample mean and target value is calculated and
cumulatively summed, thus obtaining the so-called cusum, as indicated in the last column of
the table, the presence of a steady trend downwards becomes apparent quite soon.



A plot of Cusum vs observation
number in this case would be the one
shown in the figure on the right:

If a manufacturing or analytical 
process is under control, positive and 
negative deviations from the target 
value are equally likely and the cusum 
should oscillate about zero. 

Conversely, if the process mean changes, the cusum will clearly move away from zero. In the 
example given, the process mean seems to start deviating systematically after the seventh 
observation, since the cusum becomes increasingly negative.

Cusum charts, proposed by the English statistician Ewan S. Page in 1954, exploit this concept. 
For a proper interpretation of cusum charts, i.e., to infer that a genuine change in the process 
mean has occurred, the so-called V-mask, proposed by the English statistician George A. 
Barnard in 1959, can be adopted.

In the original version, the V-mask was drawn on a transparent plastic sheet and placed over 
the control chart, drawn on paper, with its axis of symmetry positioned horizontally and its 
apex located at an appropriate distance d to the right of the last observation.



A typical V-mask is shown in the figure on 
the right, in which the two fundamental 
parameters required for its construction, 
i.e., the lead distance, d, and the semi-angle, 
θ, are evidenced.

The V-mask is placed over the cusum plot 
with its axis parallel to the horizontal axis 
and by aligning its origin O with the last 
point in the plot.
The distance between this point and the 
mask vertex corresponds to d.

Values of d and tan θ are chosen so that significant changes in the process mean are 
detected quickly but, at the same time, false alarms are few.

In particular, the following equations are used:

tan θ = δ σx /2 where δσx  is the shift in the mean value that the user wants to detect quickly

d = (2/δ2) ln [(1-β)/α] where α is the probability of a false alarm (concluding that a shift has 
occurred while it has not) and β is the probability of not detecting a shift that has occurred.



Notably, if all the points on the chart lie 
within the arms of the V mask, as shown 
in the upper panel of the figure on the 
right, then the process is in control.

In the lower panel of the figure two 
points lie outside the upper arm of the V-
mask, thus the process is considered out 
of control.



Using Minitab 18 to draw Cusum control charts with V-masks

Cusum charts can be drawn using Minitab 18 by accessing the Stat > Control charts > Time-
Weighted Charts > CUSUM… pathway:



The CUSUM chart window is quite similar to the one used to choose settings for the 
Shewhart chart drawing, the main difference being the Target box, in which the target mean 
value has to be entered:

For this reason, only a box referred to Standard deviation is available in the Parameters sub-
menu of the CUSUM Options… window. Different types of estimate for standard deviation 
can be selected in the Estimate sub-menu.



The most important sub-menu is the 
Plan/Type one.

Indeed, an alternative type of CUSUM 
chart, called tabular, can be selected in 
this sub-menu.

As for the V-mask type, the point in the 
cusum plot on which the mask has to 
be placed can be selected in the 
“Center on subgroup:” box.

In the example, the point corresponds 
to the 12th determination.

Notably, Minitab uses a different notation to specify the V-mask parameters in the CUSUM 
Plan section, namely h and k.

Specifically:

k = tan θ = δ σx /2 and  h = d tan θ = (2/δ2) ln [(1-β)/α] tan θ, 
thus k = 0.5 corresponds to θ ≅ 27° and h = 4 implies d = 8, that, in turn, leads to δ = 1 for 
both α and β equal to 0.01.



The resulting cusum plot with V-mask superimposed on the point corresponding to the 
subgroup of responses #12 is shown in the following figure:
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Vmask Chart of C1; ...; C4

In the Minitab’s representation the tip of the V-mask is not drawn, thus it was drawn in the 
figure (with a dotted line) to emphasize the geometric interpretation of parameter h (note 
that tan θ = h/d) and show that d = 8 (meant as subsequent determinations). Deviations 
soon occurring in the cumulative sum of the data series are apparent from the figure.

dh
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Interestingly, deviations occurring at the beginning of the data series, already shown by the 
Shewhart charts, are rapidly evidenced also by the Cusum chart when the mask is located 
on the sixth point:

Actually, estimates made when deviations from the target value are less pronounced 
indicate that Cusum charts are able to detect them well before Shewhart charts, although 
geometric parameters of the V-mask play a key role in determining their performance.



Proficiency testing

The quality of analytical measurements is enhanced by two types of testing scheme, in each 
of which a number of laboratories participate simultaneously:

1) Proficiency testing (PT)
2) Collaborative trials (CT)

In proficiency testing schemes, aliquots from homogeneous materials are circulated to a 
number of laboratories for analysis, using their methods, at regular intervals (every few 
weeks or months), and the resulting data are reported to a central organizer.

Two types of PT test are usually 
performed.

In the simultaneous scheme each 
participating laboratory makes its 
analysis independently and sends 
test results to the PT provider.

After evaluation of results, a report 
is sent to each laboratory by the 
provider.



In the sequential scheme, 
participating laboratories 
work one after the other 
and, once the analysis is 
done, each of them sends 
information to the next 
laboratory.

It is worth noting that each laboratory analyzes its portion of sample using its own usual 
method, and the material circulated is designed to resemble as closely as possible the 
samples normally submitted for analysis in the relevant field of application. 

The results of all the analyses are circulated to all the participants, who thus gain 
information on how their measurements compare with those of others, how their own 
measurements improve or deteriorate with time, and how their own measurements 
compare with an external quality standard.

Actually, it is not uncommon that relevant differences are observed between different 
laboratories, even if they are well equipped and well staffed.



In one of the most common clinical analyses, the determination of blood glucose at mM 
levels, most of the results obtained during a proficiency test for a single blood sample 
approximated to a normal distribution with values between 9.5 and 12.5 mM, in itself a not 
negligible range. 

However, the complete range of results was from 6.0 to 14.5 mM, i.e., some laboratories 
obtained values almost 2.5 times higher than those of others! The worrying implications of 
this discrepancy in clinical diagnosis are obvious.

In more difficult areas of analysis the results can be so divergent that there is no real 
consensus between different laboratories. 

The importance of PT schemes in highlighting such alarming differences, and in helping to 
minimize them by encouraging laboratories to compare their performance, is very clear, and 
they have unquestionably helped to improve the quality of analytical results in many fields. 

From a statistical point of view, particularly important aspects of proficiency testing are the 
methods of assessing participants’ performance and the need to ensure that the bulk 
sample from which aliquots are circulated is homogeneous.



The recommended method for verifying homogeneity of the sample involves taking n (≥ 10) 
portions of the test material at random, separately homogenizing them, if necessary, taking 
two test samples from each portion, and analyzing the 2n samples in a random order by a 
method whose standard deviation under repeatability conditions is (for example) not more 
than 30% of the target standard deviation (i.e., the expected reproducibility) of the 
proficiency test. 

If the homogeneity is satisfactory, one-way ANOVA should then show that the between-
sample mean square is not significantly greater than the within-sample mean square.

The results obtained by the laboratories participating in a PT scheme are most commonly 
expressed as z-scores, where z is given by:

with x representing the result obtained by a single laboratory for a given analysis, xa the 
assigned value for the concentration of the analyte, and σ the target value for the standard 
deviation of the test results.



The assigned value xa can be obtained by using a certified reference material (CRM), if one is 
available and suitable for distribution to the participants. 

In some cases, this approach is not feasible, and the relevant ISO (International Standard 
Organization) standard recommends three other possible approaches, in order of decreasing 
statistical rigor:

(i) a reference value obtained from one laboratory by comparing random samples of the 
test material against a CRM; 

(ii)  a consensus value obtained by the analysis of random samples of the test material by 
expert laboratories;

(iii)  a consensus value obtained from all the participants in a given round of the scheme.

In the third case the median, or the mean of the interquartile range, can be finally adopted 
as the most reliable value, overcoming the eventual presence of outliers.

The target value for the standard deviation, σ, should be circulated in advance to the PT 
participants along with a summary of the method by which it has been established.

Since σ may vary with analyte concentration, a possible approach to its estimate is based on 
a functional relationship between concentration and standard deviation. 



One of the most known relationships of this type is the Horwitz “trumpet”, developed in 
1982, so called because of the shape of its graphical representation. 

Using many results from collaborative trials, the American statistician William Horwitz 
showed that the relative standard deviation of a method varied with the concentration, c, 
according to the approximate and empirical equation:

A graphical representation of this relationship is
shown in the figure on the right.

Another approach for the estimate of σ uses 
fitness for purpose criteria: if the results of the 
analysis, used routinely, require a certain 
precision for the data to be interpreted properly
and usefully or to fulfil a legislative requirement, 
that precision provides the largest acceptable 
value of σ.



The results of a single round of a PT scheme, i.e., the z-scores obtained by different 
laboratories, are frequently summarized as shown in the following figure, in which values
obtained during two PT rounds for the determination of Cadmium content in animal feed,
based on a different extraction method (indicated by a different colour of bars) and
different analytical techniques (ETAAS, Flame-AAS, ICP-AES and ICP-MS) are reported:



If the results follow a normal distribution with mean xa and standard deviation σ, the z-
scores will be a sample from the standard normal distribution, i.e., a normal distribution 
with mean zero and variance 1. 

Consequently, a laboratory with a z-score value lower than 2 (in absolute value) is generally 
regarded as having performed satisfactorily; a z-score value between 2 and 3 is 
questionable (two successive values in this range from one laboratory would be regarded 
as unsatisfactory), and z-score  values  greater than 3 are unacceptable.

If an unsatisfactory score is obtained several issues should be considered:

  The overall standard of performance for the round:
 Did a large number of participants obtain unsatisfactory results? If so, the problem may
 not lie within a specific laboratory.

 Test method performance:
- Which test methods were used by the other participants in the round? Did other 
laboratories use methods with very different performance characteristics?

 - How was the standard deviation for proficiency assessment established? Was it 
appropriate for the laboratory’s own needs?



  Test sample factors:
 Was the material for that round within the scope of the laboratory’s normal 

operations? Proficiency testing schemes often cover a range of materials appropriate 
to the scheme, but individual laboratories may receive materials that differ in 
composition from their routine test samples.

 Proficiency testing scheme factors:
- How many results were submitted? Small numbers of results can make it difficult to 
establish the assigned value if the consensus approach is used.

 - Were there any problems with the organization of that particular round? Occasionally
 there may be problems such as unexpected test material behaviour, data entry or 

reporting errors, software problems or unsuitable evaluation criteria (for example, 
choice of assigned value or standard deviation for proficiency assessment).

If none of the above applies, the laboratory should investigate further to try to identify the
cause of the unsatisfactory result and implement and document any appropriate corrective
actions. There are many possible causes of unsatisfactory performance. These can be 
categorized as analytical errors or non-analytical errors; both are equally important.



  Examples of analytical errors
 
  incorrect calibration of equipment
  analyst error such as incorrect dilution of samples or standards
  problems with extraction and clean-up of samples, such as incomplete extraction of 

 the analyte from the sample matrix
  interferences
  performance characteristics of the chosen test method not fit for purpose
  instrument performance not optimized.

  Examples of non-analytical errors
 
  calculation errors
  transcription errors
  results reported in incorrect units or incorrect format



The performance of a laboratory can be monitored over time, through participation to 
periodic proficiency tests.

In this case, simple graphic representations based on z-scores can be adopted to visualize 
how the laboratory performance is changing over time, as shown in the following figure:

This graph, reporting z-scores obtained by a laboratory during 22 consecutive rounds for 
the determination of nickel in soil by aqua regia extraction,  shows that only a specific 
round led to very poor results, with z-score being much higher than 3, in absolute value.



While proficiency testing schemes allow the competence of laboratories to be monitored, 
compared and, perhaps, improved, a collaborative trial (CT) aims to evaluate the precision 
of an analytical method, and sometimes its ability to provide results free from bias.

It is normally a one-off experiment involving competent laboratories, all of which, by 
definition, use the same technique.

A crucial preliminary experiment to be performed is a ruggedness test, i.e., an evaluation 
of how some experimental factors related to the analytical method (e.g., temperature,
solvent composition, pH, humidity, reagent purity, concentration, etc.) will affect the
results.

In some cases, a method is found to be so sensitive to small changes in one factor that it is 
in practice very difficult to control (e.g., it requires a very high reagent purity), thus the 
method is rejected as impracticable before a CT takes place.
In other instances, the trial will continue, but the collaborators will be warned of the 
factors to be most carefully controlled.

Full or fractional factorial designs can be often exploited for the preliminary evaluation of 
the method ruggedness.

Collaborative trials



In recent years international bodies have moved towards an agreement on how CTs should 
be performed. First, at least eight laboratories (k ≥ 8) should be involved.

Since the precision of a method usually depends on the analyte concentration, it should be 
applied to at least five different levels of analyte in the same sample matrix, with duplicate 
measurements (n = 2) at each level.

A crucial requirement of a CT is that it should distinguish between the repeatability standard 
deviation, sr, and the reproducibility standard deviation, sR. 
At each analyte level these are related by the equation:

where s2
L is the variance due to inter-laboratory differences, which reflect different degrees 

of bias in different laboratories. 

Note that, in this particular context, reproducibility refers to errors arising in different 
laboratories and equipment but using the same analytical method: this is a more restricted 
definition of reproducibility than that used in other cases.

The separation of variances in the equation reported above can be performed using one-way 
ANOVA, if the mean of responses obtained in different laboratories is normally distributed 
and the repeatability variance among laboratories is equal.



The homogeneity of variance can be tested first, using, for example, the Cochran’s method, 
usually adopted to check if a specific variance in a set of variances can be considered an 
outlier. The test is based on the calculation of the following statistic:

where wmax is the largest of ranges wj, i.e., of the differences between the two results 
obtained by each laboratory.  Obviously, ranges are replaced by variances if more than 2 
analyses are performed by each laboratory.

The realization of statistic C is 
compared with the appropriate 
critical value among those reported 
in the table on the right:

If C is greater than the critical value, 
the null hypothesis is rejected and 
the results from the laboratory 
providing wmax as a range are 
discarded.



The absence of outlying results is evaluated using the Grubbs’ test , which is applied first as 
a test for single outliers, and then (since each laboratory makes duplicate measurements) as 
a test for paired outliers.
Once again, all the results from laboratories producing outlying results are eliminated from 
the trial unless this would result in the loss of too many data.

In many circumstances it is not possible to carry out a full CT as described so far, for 
example when the test materials are not available with a suitable range of analyte 
concentrations. In such cases, the Youden matched pairs or two-sample method, first 
described by the Australian statistician William John Youden in 1959, is adopted.

 

According to this method, each participating 
laboratory receives two materials of nearly 
identical composition, X and Y, and is asked to 
make one determination on each material.

The results are plotted as shown in the figure 
on the right, in which each point represents a 
pair of results from one laboratory. 

The mean values obtained for the two materials 
are also determined, and vertical and horizontal 
lines are drawn through the point (X,Y), thus 
dividing the chart into four quadrants. 



If only random errors occur, the X and Y 
determinations may give results which are both 
high (+,+), both low (-,-), or one high and one low 
or viceversa (+,-  or  -,+). 
These four outcomes are equally likely, thus the 
number of points in each of the quadrants should 
be roughly equal. 

If a systematic error occurs in a laboratory, it is 
likely that its results for X and Y will be both high or 
low. Consequently, if systematic errors dominate, 
most of the points will be in the top-right and 
bottom-left quadrants. This is indeed the result 
obtained in most cases. 



Notably, if random errors were absent all the 
results would lie on a line forming an angle of 
45° with the axes of the plot. Consequently, 
when, in practice, such errors do occur, the 
perpendicular distance of a point from that 
line is a measure of the random error of the 
laboratory. 
On the other hand, the distance from the 
intersection of that perpendicular with the 45° 
line to the point (X, Y) measures the systematic 
error due to the analyst or the laboratory. 

The Youden method is a very effective approach to a collaborative trial, being capable of 
yielding a good deal of information in a simple form. 

The Youden approach has the further advantage that participating laboratories are not 
tempted to censor one or more replicate determinations, and that more materials can be 
studied without large numbers of experiments.



An example of collaborative trial

A collaborative trial was devised to evaluate a new method (Q1) developed to measure 
quickly wheat flour protein concentrations.

Five different wheat flours with different protein levels (A-E) were prepared and 15 different 
laboratories around the world were contacted and agreed to participate, receiving 10 flour 
samples each, i.e., five flours prepared in duplicate and assigned a number by a random 
process. 

Each laboratory was asked to 
analyze each sample by the Q1 
method and report the results 
as percentages estimated to 
two decimal places, as shown 
in the following table:

T.C. Nelsen, P.W. Wehling, Cereal Foods 
World, 53, 2008, 285-288.



Cochran’s and Grubbs’ tests were performed preliminarily to evaluate if outlying ranges (i.e., 
variations between the two replicated results obtained by a single laboratory) or data were 
present, respectively. No deviation was observed.  

Further method performance statistics were thus considered subsequently:

In this table:

sr and sR correspond to repeatability (within-laboratory) and reproducibility (within + 
between laboratory) standard deviations, respectively;

RSDr and RSDR correspond to their ratios with mean, expressed as percentages;

r and R parameters correspond to, respectively, repeatability and reproducibility as 
expressed by the ISO standard 5725, i.e.: r = 2.8 × sr and R = 2.8 × sR. 



Finally, HorRat values correspond to ratios between experimental RSDR values and those 
predicted from the Horwitz’s trumpet.

The HorRat value should be comprised between 0.5 and 2.0; values lower than 0.5 can be 
suspected of being too good to be true, whereas values comprised between 1.5 and 2.0 can 
be an indication of material instability, among other possible problems. HorRat values 
greater than 2 can cause the method to be judged unreliable and thus unacceptable.

In the specific case HorRat values were generally quite high, and, additionally, RSDr values 
were much lower than RSDR, which is another indication of unreliability.

In order to make a final decision on the method, a ranks test was performed.

First, protein values for each sample were ranked from largest to smallest. Protein values 
obtained by each laboratory were then replaced by the corresponding rank and finally the 
10 ranks were summed for each laboratory.

The rank sum can be tested for significance. Indeed, if the method is truly independent on a 
specific laboratory, then no lab should provide a sum consistently higher or lower than the 
other labs.
In the case of 15 labs and 10 samples no rank sum should be lower than 41 or greater than 
119 (P < 0.05).



Ranks observed in the specific case are shown in the following table:

In this case rank sums for labs 8 and 15 were consistently low and were lower than 41 and 
those for labs 6 and 7 were consistently high and were higher than 119.

This outcome can be interpreted with the presence of a systematic bias for the method and 
the method developer should try to find the source of this bias and correct it.
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