
Hypothesis testing

Hypothesis testing, introduced by Fisher, Neyman, and by Karl Pearson and his son Egon, is
a method of statistical inference, used in making statistical decisions based on experimental 
data. It is basically an assumption made about the population parameter.

The usual process of hypothesis testing consists of the following steps:

1. formulate the so-called null hypothesis H0 and the alternative hypothesis H1;

2. identify a test statistic T, that can be used to assess the truth of the null hypothesis.

3. infer the distribution of the test statistic under the null hypothesis from the assumptions 
(e.g., the test statistic might follow a Student’s t or a normal distribution).

4. select a significance level (α), a probability threshold below which the null hypothesis will 
be rejected. Common values are 5% and 1%, leading to respective critical values of T. 

5. compute the observed value (realization) t of the statistic T from the observations and 
compare it with the critical value of T.

Hypothesis tests based on statistical significance are another way of expressing confidence 
intervals. In other words, every hypothesis test based on significance can be obtained via a 
confidence interval, and every confidence interval can be obtained via a hypothesis test 
based on significance.



The type of hypothesis testing depends on the
formulation of the alternative hypothesis.
For tests related to mean (comparison
between a mean and a known value or
between two means) H0 ad H1 are formulated
as follows:

In the case of a two tailed test two critical
values are defined.



Hypothesis testing for normally distributed populations: comparison between a
sampling mean and a known value

Case hypotheses statistic and 
type of test

rejection criteria
for null hypothesis

1: normal distribution
σ2 known

T = ( X - µ0) / (σ/ n ) ~ N(0,1)
one tail t ≥ z(1-α)
one tail t - z

µ = µ0
µ > µ0
µ < µ0
µ ≠ µ0 two tails t z

2: normal distribution
σ2 unknown, n > 30

T = ( - µ0) / (s/ n ) ~ N(0,1)

3: normal distribution
σ2 unknown, n < 30 

T = ( - µ0) / (s/ n ) ~ t n-1

µ = µ0
µ > µ0
µ < µ0
µ ≠ µ0

µ = µ0
µ > µ0
µ < µ0
µ ≠ µ0

one tail
one tail
two tails

one tail
one tail
two tails

X

X

(1-α)

(1-α/2)≥
≤

t ≥ z(1-α)
t - z
t z

(1-α)

(1-α/2)≥
≤

t ≥ tn-1,(1-α)
t -
t (1-α/2)≥
≤ tn-1,(1-α)

tn-1,

H0 :

H0 :

H1 :
H1 :
H1 :

H1 :
H1 :
H1 :

H0 :
H1 :
H1 :
H1 :



Hypothesis testing for normally distributed populations: comparison between two means
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t ≥ tν, (1-α/2)

µ1 - µ2 = 0
µ1 - µ2 > 0
µ1 - µ2 < 0
µ1 - µ2 ≠ 0

µ1 - µ2 = 0
µ1 - µ2 > 0
µ1 - µ2 < 0
µ1 - µ2 ≠ 0

µ1 - µ2 = 0
µ1 - µ2 > 0
µ1 - µ2 < 0
µ1 - µ2 ≠ 0

Case hypotheses statistic rejection criteria
1: normal distributions
σ1

2 and σ2
2 known

2: normal distributions
σ1

2 and σ2
2 unknown

n1 and n2 > 30

3: normal distributions
σ1

2 and σ2
2 unknown

but equal
n1 and/or n2 > 30

4: normal distributions
σ1

2 and σ2
2 unknown

but different
n1 and/or n2 > 30

H0 :
H1 :
H1 :
H1 :

H0 :
H1 :
H1 :
H1 :

H0 :
H1 :
H1 :
H1 :

H0 :
H1 :
H1 :
H1 :



Hypothesis testing: type I and type II errors, power of the test

The probability of type I error
corresponds to the significance level α;
the probability of the type II error is 
denoted by the Greek letter β and is 
related to the power of a test, i.e., to the 
probability of accepting a true H1 
hypothesis, which equals 1−β.

The representations related to a one tail
and to a two tails test are shown in the
picture on the right.

In statistical hypothesis testing a type I 
error is the rejection of a true null 
hypothesis (also known as a "false 
positive" finding or conclusion), while 
a type II error is the acceptance of a 
false null hypothesis (also known as a 
"false negative" finding or conclusion).



As shown in the table, in the context of 
analytical chemistry the power of the 
test represents its ability to recognize 
correctly a positivity, i.e., to state the 
presence of an analyte, when the 
analyte is actually present in a sample.
This ability is very important, since a 
positivity could lead, for example, to 
discard an entire lot of product.

The relationship between α and β can 
be visualized under different conditions. 
If the critical value, e.g., based on a 
standardized normal distribution (ZCRIT), 
is changed, in accordance with the 
adopted Type I error probability (α), the 
Type II error probability (β) increases at 
the decrease of α, for a specific value 
referred to the H1 hypothesis: 



As shown in the figure on the right, once α 
is fixed (for example, 0.05) β is decreased if 
the value referred to the H1 hypothesis is 
increased.

If values related to H0 and H1 hypotheses 
and α are fixed, β will be decreased if the 
variance related to the statistic under test is 
decreased:



Hypothesis testing for normally distributed populations: comparison between a
variance and a known value

Hypotheses statistic
type of test
T = (n-1)s2/ σ0

2~ χ2
n-1   

one tail t ≥ χ2
n-1 (1-α)

one tail t ≤ χ2
n-1(α)

σ2 = σ0
2

σ2 > σ0
2

σ2 < σ0
2

σ2≠ σ0
2 two tails t ≤ χ2

n-1 (α/2 )  or
t ≥ χ2

n-1 (1-α/2) 

H0 :
H1 :
H1 :
H1 :

rejection criteria
for null hypothesis

Hypothesis testing for normally distributed populations: comparison between
two variances

T = snum
2 /sden

2 ~ Fνnum ,ν den

t ≥ Fνnum νden (1-α )

t ≥ Fν num νden

σ1
2 = σ2

2

σ1
2 > σ2

2

σ1
2 < σ2

2

σ1
2 ≠ σ2

2 t Fν num,νden≥
,
,

(1-α )
(1-α/2)

H0 :

H1 :
H1 :
H1 :

Hypotheses statistic
type of test

rejection criteria
for null hypothesis

one tail
one tail
two tails

Note that s2
num and s2

den are chosen so that s2
num >  s2

den 



Statistic equivalence testing

The challenge of assessing the comparability of different groups (or treatments or methods) 
is an issue facing many researchers and evaluators. Actually, the question of interest is often 
not whether two (or more) groups (or treatments or methods) are different from one 
another, but, rather, whether the groups (or treatments or methods) can be considered 
“practically the same” (i.e., equivalent).

Equivalence testing should assess whether mean differences between two groups are small 
enough that the groups can be considered equivalent (the differences found are considered 
practically unimportant).

The problem with using hypothesis testing methods is that a statistically non-significant 
value (failure to find a group difference – i.e., acceptance of H0) is used to imply that the 
groups are comparable. However, a statistically non-significant finding only indicates that 
there is not enough evidence to support that two (or more) groups are statistically different. 

It is possible that the two groups are effectively comparable, but it is also possible that:
 

 the study did not have enough power to detect a statistical difference 
 there was high variability in the sample
 the study was poorly designed. 



Approaches to equivalence testing

Equivalence testing is recommended as a possible alternative to demonstrating 
comparability through the examination of whether mean differences between two groups 
are small enough that these differences can be considered practically unimportant and, 
thus, the groups can be treated as equivalent.

There are three general categories of equivalence tests:

1) the two one-sided t-tests (TOST) - procedure
2) the non-equivalence null hypothesis approach
3) Bayesian methods

The TOST procedure is the most popular, thanks to the ease of use and interpretation, and 
will be thus described in detail in the following slides.



Two one-sided t-test (TOST) for equivalence testing

Designed specifically for bioequivalence testing of pharmaceutical products, i.e., to assess 
the expected in vivo biological equivalence of two proprietary preparations of a drug, TOST 
has recently been expanded into broader applications in pharmaceutical science, process 
engineering, psychology, medicine, chemistry, and environmental science.

The most important step in conducting equivalence testing is to give an operative definition 
of equivalence prior to statistical testing, e.g., by defining an acceptance criterion.

Briefly stated, this approach calculates a confidence interval around the mean difference 
between two groups. If this confidence interval is located within a specified range (the 
equivalence interval) then the groups are considered equivalent. 



TOST is based on a null hypothesis stating that the two mean values are not equivalent, then 
tries to demonstrate that they are equivalent within a practical, preset limit. 

This is conceptually opposite to the two-sample t-test procedure, included in hypothesis 
testing:

Equivalence testTwo-sample t-test

0: 210 =− yyH

0: 211 ≠− yyH

210 : yyH =

211 : yyH ≠

0: 210 ≠− yyH

0: 211 =− yyH

210 : yyH ≠

211 : yyH =

⇔ ⇔



The  acceptance criterion θ is the limit beyond which the difference in mean values should 
be considered practically and statistically significant, thus θ is used to construct the 
equivalence interval [-θ, θ].
The two hypotheses can thus be written as:

The absolute values in the original equivalence test hypotheses are broken up into two 
separate tests:

The two groups means are declared equivalent if, and only if, both H01 and H02 are rejected, 
in favor of hypotheses H11 and H12.

θ: 210 ≥− yyH θ: 211 <− yyHversus

not equivalent equivalent

θ: 2101 −≤− yyH θ: 2102 ≥− yyHor

θ: 2111 −>− yyH

tested against the 
alternative hypothesis

θ: 2112 <− yyH

tested against the 
alternative hypothesis



-θ +θ0

θ: 2101 −≤− yyH
θ: 2111 −>− yyH

θ: 2102 ≥− yyH
θ: 2112 <− yyH

H02

H01

tcrit

-tcrit

When samples to which compared means are referred are extracted from gaussian 
populations having equal variances and their sizes are lower than 30 (like in case 3 of 
hypothesis tests for mean differences), the test statistics and the criteria for H11 and H12 
acceptance are:
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where n1 and n2 are the sizes of the two samples,  sp is the weighed standard deviation and 
tcrit is the 100 × (1-α)-th percentile of the t distribution with (n1+n2-2) degrees of freedom.



0-θ +θ

H01 H02

It is worth noting that H01 and H02 hypotheses 
cannot be both true, therefore Type I error 
rate will be determined by the critical region 
of only one of the curves representing H01 and 
H02:

If the standard deviation of the test statistic is 
too large and/or the width of the equivalence 
interval is too small, the two critical regions 
will overlap to a significant degree, thereby 
producing a conservative test.
A statistical test is conservative if, when 
constructed for a given nominal significance 
level, the true probability of incorrectly 
rejecting the null hypothesis is never greater 
than the nominal level.

Rejection of
null

hypothesis

+θ-θ 0

H02H01

α



Relationship between a confidence interval and a TOST 

α=0.05α=0.05

0 +θ-θ

H02H01

α = 0.05

Z(1-α)SE Z(1-α)SE

ULLL
TS

The graphical representation of a TOST with a [100 × (1-α)]% confidence level can be 
compared with that of a [100 × (1-2α)]% confidence interval centered on the value 
assumed by the test statistic TS, i.e., by the difference between the two sampling means 
under comparison. 
For the sake of simplicity, let us consider the case in which a gaussian distribution with 
standard deviation SE can be used. Moreover, the value assumed by the TS will be 
reasonably different from 0.

For 2α = 0.10, 1-α = 0.95 
and then z(1-α) = 1.65, thus 
1.65 × SE is the half width 
of the 90% confidence 
interval, i.e., the distance 
between TS and the lower 
(LL) or the upper (UL) limits 
of the interval.
That value is also the 
distance between the 
hypothesized null value of 
the mean difference, θ or -
θ, and the beginning of the 
critical region:



+θ-θ

H02H01

0
ULTS

critical region

H02 rejected

Different situations can be 
found:

1) TS is in the critical region 
for H02, thus H02 is 
rejected:

 In this case the UL of 
the confidence interval 
is lower than θ.

2) TS is not in the critical 
region for H02, thus H02 
is not rejected:

 In this case the UL of 
the confidence interval 
is higher than θ.

+θ-θ

H02H01

0

UL

TS

fail to reject H02

critical region



The same consideration 
applies for the lover limit 
(LL) of the confidence 
interval when H01 is tested:

+θ-θ

H02H01

0

LL

TS

H01 rejected

critical regions

+θ-θ

H02H01

0

TS ULLL

critical regions

A more direct assessment 
can thus be carried out by 
an inspection based on the 
entire 90% confidence 
interval on the difference 
between means (TS):



If concepts are summarized, it can be said that:

two one-sided tests (TOST) to establish significance at an α level can be conveniently
performed also using a 100 × (1-2α)% confidence interval centered on the test statistic (TS).

Indeed, if such an interval is completely contained within the [-θ, θ] interval, the mean values 
of the two data sets are declared equivalent.

Note that the interval has to be calculated using the Student’s t distribution, if cases 3 or 4 
apply:

Case 3)

where sp
2 is the variance obtained by a weighted average of the two sampling variances.

Case 4)

where ν is obtained from the equation defined for the Fisher-Behrens problem.

𝑦̄𝑦1 − 𝑦̄𝑦2 ± 𝑡𝑡1−𝛼𝛼,𝑛𝑛1+𝑛𝑛2−2 𝑠𝑠𝑝𝑝2
1
𝑛𝑛1

+
1
𝑛𝑛2

𝑦̄𝑦1 − 𝑦̄𝑦2 ± 𝑡𝑡1−𝛼𝛼,ν
𝑠𝑠12

𝑛𝑛1
+
𝑠𝑠22

𝑛𝑛2



Significance vs equivalence test

equal and equivalent 

equal but not equivalent, 

not equal but equivalent, 

not equal and not equivalent.

The conclusions for each scenario with a t-test and TOST, respectively, would be: 

Consequently:
 acceptance of null hypothesis in a t-test does not necessarily imply equivalence
 rejection of null hypothesis in a t-test does not necessarily imply non equivalence. 



The width of the interval, which depends on the measurement precision, represents the 
range of plausible true differences in mean values of the two data sets. 

If these intervals were created with the traditional two-sample t-test, in cases a, b and c 
the analyst would conclude that there is no difference between the mean values, 
because the confidence interval includes a difference of 0. 
The confidence intervals in cases d and e do not include 0; therefore, the mean values 
would be declared different.

If confidence intervals were created with TOST, the mean values of the two data sets 
would be declared equivalent only in cases a and d, because those confidence intervals 
would be completely contained in the [– θ, θ] interval. 

The mean values in case d would be declared equivalent even though the confidence 
interval does not include 0, because the bias represented by the difference in means is 
small and within the interval [– θ, θ]. 
The confidence intervals in cases b and c are too wide for the mean values of the data 
sets to be declared equivalent.

Two-sample t-test (or significance test) point of view

TOST - Two one-sided t-test (or equivalence test) point of view



Choice of an appropriate θ value for TOST

Choosing an appropriate value for θ in a TOST can be a challenge.
The following step-by-step process can be followed:

1) Choosing a value for the absolute value of the true difference, δ

The first parameter that must be specified before an analyst performs equivalence 
testing is δ, the absolute value of the true difference between the groups’ mean values; 
δ is a hypothetical value, such that if the absolute value of the observed difference is not 
greater than δ there is a strong probability of concluding that the two data sets
represent equivalent results.
The most conservative approach implies setting δ = 0.

2) Determining the n value needed for the test

The required value of n for TOST is related to θ and to other parameters, like Type I and 
Type II errors, i.e., α and β, respectively, the true difference δ and the upper confidence 
limit of method precision, s*. 

Tables relating n and θ values for various combinations of the other parameters are 
available.



As expected, once s* is fixed, the decrease of n leads to an increase in θ, thus making it 
easier to prove equivalence, or, in other terms, making the proof of non-equivalence more 
difficult. This is typical of statistical testing.

On the other hand, once n is fixed, the increase in s* determines an increase in θ. This 
effect is due to the fact that if the precision is low, small differences between the two 
means under comparison may be not significant.



3) Finding an estimate for s*

Once the sample size n is chosen, an estimate of the precision of a measurement, 
expressed as standard deviation s, is made through replicated analyses, usually 
performed by a single analyst or a single laboratory.

Although this approach can lead to underestimate precision, it is a pragmatic 
compromise between appropriate statistical application and real-world constraints on 
resources. 

To ensure a better representation of the true measurement precision, it is 
recommended that an upper confidence limit (e.g., the upper limit from a one-sided 
80% confidence interval), indicated as s*, be used as an estimate of measurement 
precision.

It can be demonstrated that the upper 100(1-γ)% confidence limit s* for s can be 
calculated as:

where χ2
(γ, n-1) represents the (100 γ)th percentile of a χ2 distribution with n-1 degrees of 

freedom.



Indeed, let us consider that, for a random variable distributed according to a Gaussian 
distribution with variance σ2, the following relationship is true:

(n-1)s2/σ2 ∼ χ2
n-1

It thus follows that, for a two-sided confidence 
interval with a significance level γ:

χ2
γ/2, n-1 ≤ (n-1)s2/σ2    ≤ χ2

1-γ/2, n-1

consequently:

σ2  χ2
γ/2, n-1 ≤ (n-1)s2 ≤ σ2  χ2

1-γ/2, n-1

and thus:

s (n-1)1/2 / [χ2
1-γ/2, n-1]1/2 ≤ σ  ≤ s (n-1)1/2 / [χ2

γ/2, n-1]1/2

The upper limit for a one-sided confidence interval with a significance level γ, i.e., a
confidence level 1-γ, is thus given by:

s (n-1)1/2 / [χ2
γ, n-1]1/2

χ2
γ/2, n-1

χ2
1-γ/2, n-1



4) Refining the θ value by considering also Type II error (β)

In previous graphical representations of the equivalence test the distribution related to 
the H1 hypothesis 

was not reported for simplicity and only type I error (α) was evidenced. 

The following representation is required to show both types of error, including β:

θ: 211 <− yyH

θ0

σ t(1-β/2) σ t(1-α)

-θ

δ=0

H01 H02H1



Since equal variances are related to the three distributions shown in the figure, the 
population standard deviation, σ, can be estimated using the expression (case 3):  
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The following general expression can be thus obtained for θ:

This equation can be slightly modified when n1 = n2 = n > 30, since the Student’s t 
distribution values can be replaced by those obtained from the Gaussian distribution; 
moreover, s* can be used instead of s, thus the expression for θ becomes:



Interestingly, an equation providing a value for n, once s* is known, can be obtained 
starting from the last equation: 



Example of sample size calculation

Two inhalers used for the relief of asthma attacks have to be assessed for equivalence.
They will be considered equivalent if the 95% two-sided confidence interval for the 
treatment difference, based on morning peak expiratory rate (L/min), falls entirely 
within the interval ±15 L/min.

Under these conditions, θ - δ = 15 (considering δ = 0, as usual) and α = (1-0.95)/2 = 
0.025.

From a previous trial s*2 was estimated to be equal to 1600 (L/min)2. 

Supposing that a power of 0.8 has to be obtained, thus (1-β) = 0.8 and then β/2 = 0.1, 
the following calculations can be made:

z(1-α) = z(1-0.025) = z0.975 = 1.96

z(1-β/2) = z0.90 = 1.28

The size of each group of patients for the evaluation of the two inhalers should be:

                                                           = 2 × 1600
152  [1.96 + 1.28]2 = 149.3 ≅ 149



Comparison between t-test and equivalence test: an example

In Table 2 data obtained by a method 
development laboratory and by a 
manufacturing quality control (QC) 
laboratory for a dissolution test performed 
on 12 drug tablets, expressed as 
percentage of content indicated on the 
drug label, are reported:

Starting from a 0.05 value for α and β, a 0 
value for δ, n = 12, and an s value of 1.9%, 
which is then transformed into s*, θ is 
calculated to be equal to 3.7%.

Since the difference between the two 
means is: 89.3 - 87.7 = 1.6%, and the 90% 
confidence interval goes from 0.5 to 2.7%, 
the null hypothesis, stating that they are 
not equivalent, is rejected, thus the two 
laboratory methods are declared 
equivalent.



0 3.7-3.7

( )

TOST : equivalent
two-sample t-test : not equal 

1.6 %

As shown in the graph on the right, 
the 90% confidence interval clearly 
does not include 0, thus the classical 
two-sample t-test indicates that a 
significant difference exist between 
the two methods.

Notably, this outcome is indicated by 
the p value, 0.02, reported in the 
previous table. In fact, the p-value is 
the probability of observing a T value 
more extreme than the one that 
would be observed if the means 
were not statistically significant. 
Consequently, if p is lower than the 
significance level, a significant 
difference between the means is 
inferred.

The example highlights a key advantage of TOST over a two- sample t-test for showing
equivalence: TOST allows small, scientifically irrelevant differences to exist without leading 
to the conclusion that the laboratory means are not equivalent.



Consequences of poor precision

Table 3 is an example of a tablet 
dissolution method that was 
transferred from a development 
laboratory to a contract laboratory 
during the early stages of product 
development. 
In this study, n = 6 for each laboratory 
because of limited sample availability.

With an initial s* estimate of 1.5%, 
arising from previous analyses, θ was 
calculated as 3.5%, which would 
generally be considered acceptable for 
a method of this type. 

However, the actual s from each 
laboratory was much larger than the 
initial estimate of 1.5%. This was 
determined to be the result of poor 
sample homogeneity caused by 
degradation during storage.

(82.2) (78.5)

3.7



0 3.5-3.5 %

-3.1 10.53.7

When data are compared 
by an equivalence test 
with  θ = 3.5%, there is 
not enough evidence to 
declare the laboratories’ 
methods equivalent.

Conversely, if the laboratory mean values are compared with a two-sample t-test, the 
resulting confidence interval includes 0, thus data do not provide enough evidence to 
conclude that the laboratories’ methods are different (the p-value of 0.35 is another way to 
express the same result).

In this case, the traditional two-sample t-test does not reject the hypothesis that the data 
sets are equal, because s values for the two datasets are too large with respect to the 
difference between the mean values of y.

This example highlights another key advantage of TOST over a two-sample t-test: TOST 
appropriately penalizes the analyst if the observed variance is too large.

TOST : not equivalent
two-sample t-test : equal 



Considerations on test power

For the present situation, power is 
defined as the probability of 
attaining significance when              is 
contained  in the  interval [-θ, θ].

Equivalently, power may be defined 
as the probability that a properly 
constructed confidence interval will 
be completely contained in the 
interval [-θ, θ] when               is in the 
interval [-θ, θ].

21 yy −

21 yy −

+θ-θ 0

H02H01

0: 211 =− yyH

(1-β)

β/2 β/2αα

95% CI

Power calculations are usually carried out under the assumption that                   although 
other values may be chosen.
The unshaded area of the central distribution in the figure depicts a power of 0.95 for a 
two-sided equivalence test. Notice that the probability of failing to obtain a significant 
result in this situation is the shaded portion in the tails of the central distribution. Because 
power is 0.95, the total shaded area is 0.05 with 0.025 allocated to each tail.

021 =− yy



Example of calculation of test power for a TOST as a function of sample size

Two parallel groups of patients are enrolled to compare the effect of two drugs on diastolic 
(minimum) blood pressure. 
The diastolic blood pressure is known to be close to 96 mmHg with the reference drug and 
is thought to be 92 mmHg with the experimental drug. Based on similar studies, the within-
group standard deviation is set to 18 mmHg. 

Following the United States Food and Drug Administration (FDA) guidelines, the researchers 
want to show that the diastolic blood pressure with the experimental drug is within 20% of 
the diastolic blood pressure with the reference drug. Note that 20% of 96 is 19.2. 
They decide to calculate the test power for a range of sample sizes between 3 and 60. The 
significance level is α= 0.05.

The following conditions are thus posed:

α...............................................................    0.05
Group Allocation ......................................   Equal (n1 = n2)
Sample Size Per Group..............................   3, 5, 8, 10, 15, 20, 30,  40,  50,  60
Lower, Upper Equivalence Limit  (-θ, θ)....   -19.2, 19.2
δ (True Difference)....................................    (92-96) = -4 mmHg
s (Standard Deviation) ..............................   18 mmHg



Power calculation can be performed using the PASS 2025 software, available on the Internet 
(for a 30-days free trial), at the following address:

https://www.ncss.com/software/pass/



As far as equivalence is concerned, the PASS software provides 37 different procedures,
including Two-Sample T-Tests for Equivalence Assuming Equal Variance:



When accessing the corresponding page, all parameters required for the equivalence test can
be set. In the following case, once values for α, θ, δ and σ are specified, along with the
condition N1 = N2, the test power can be calculated for a range of sample sizes:



n1 = n2=n

n=20

n=3

A graph reporting Power vs sample size is
also generated by the program:

As expected, the test power is increased at
the increase of the sample size, with a
value of 0.8 achieved already for n = 20.

As apparent, further increases of the
sample size lead to smaller increases in the
test power, that asymptotically tends
towards unity, thus an enlargement of the
sample set is not very useful.



Equivalence test performed using the 
Minitab® 18 software

First step

select Equivalence Tests in
the Stat menu and then
choose the 2-Sample…
option



Second step

Evaluation of parameters and
choices in the 2-Sample
Equivalence Test window:



Third step

Data (in this example taken from Table 2 shown before) are introduced into the Minitab 18
Worksheet, with each set corresponding to a specific column:

82.2

3.7

78.5



Fourth step

Selection of samples columns in the Worksheet and setting of lower and upper limits, i.e. of
–θ and + θ values, which were calculated to be equal to -3.5 and 3.5 in the specific case:



Results

Once the calculation is completed, an
output summary is reported inside the
Session window:

As apparent, the conclusion is that the
confidence interval (90% CI, in this
case) is NOT within the equivalence
interval, thus equivalence cannot be
claimed.

By clicking on the bottom link, a
graphical representation of the test
can be obtained.



Graphical output of the equivalence test



Power and Sample Size calculations with Minitab 18

A further option of the
Stat menu of Minitab 18
enables calculations of
power and sample size
also for equivalence tests:



The window opened after choosing the option includes the specification of –θ and θ values
(Lower and Upper limit) and of experimental standard deviation.
Afterwards, if a specific sample size and a specific difference (like the one between
experimental means) are specified, the program can calculate power values as a function of
differences and sample sizes.
Considering data of Table 2 shown before (θ = 3.7):



The following «Test power vs difference» curves are obtained:

Notably, the user can make the program generate a further power curve, for a different
sample size (n = 24 was chosen in the present case), using the «Graph…» option in the
window shown before.

As expected, the test power :

 is decreased, for a given sample size, at the increase of the difference absolute value;
 is increased, for a given difference, at the increase of sample size.



The power curve generation output
depends, obviously, also on the
selected standard deviation.

In the case of Table 2 data, the upper
limit of a one-sided 80% confidence
interval for standard deviation can be
calculated as follows:

For n = 12, the χ2
(0.2, 11) value has to

be calculated and it is equal to 6.989.

Given the maximum experimental
standard deviation reported in Table
2, s = 1.9, it follows that s* = 2.38.

As shown by the figures, given a
specific sample size and difference,
the test power is decreased at the
increase of standard deviation.

s = 1.9

s = 2.38
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