
Outliers

An outlier is an observation clearly differing from other observations of the same group, and
thus it is able to alter significantly one or more parameters like mean, variance and
symmetry.

The search for outliers may have different goals:

 estimating the real mean or variance of a phenomenon, once the outlier(s) has(have)
been eliminated

 studying the causes that led to the generation of outliers.

The difficulty in the identification of an outlier is due to at least three reasons:

1) presence of masking effects: sometimes an outlier can be “masked” by the presence of 
another one;

2) dependence of the outlier recognition on the sample dimension
3) incorrect hypothesis on the data distribution.



As an example, let us consider the following data series:

If only the first row is considered, statistical parameters are significantly different if the value 
86 is included or not.
If all the 12 data are considered, mean and standard deviation become closer to those 
obtained for the first row when the value 86 is excluded:

It would thus be less likely to consider value 86 as an outlier (unless a specific test is made) 
when the sample size is increased.

Data Row 1 Rows 1 + 2

Without 86 With 86

Dimension n 5 6 12

Mean 97.4 95.5 96.5

Standard dev. 1.5 4.8 3.5

Range (max. diff.) 4 11 11

Median 98 97.5 98

97 98 98 95 86 99

98 98 97 99 98 95



As a further example, if the following series is obtained for the counts of insects collected in 
a trap:

value 560 would likely be considered as an outlier by almost all statistical tests for outlier 
recognition, since most of the latter assume a normal distribution.
However, the distribution of insect counts might be highly asymmetric (e.g., because of the 
possibility of collecting swarms occasionally).

Great care must then be posed before discarding an observation as an outlier.

Among several approaches available for outlier recognition, the following are the most 
common and will thus be considered in next slides:

1) Dixon’s Q-test
2) Grubbs’ test
3) Tukey’s Box-and-Whisker plot (also called box-plot)
4) Median Absolute Deviation (MAD)
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Dixon’s Q test for a single outlier

Dixon’s Q test for a single outlier, that is one of a set of tests proposed by the American
statistician Wilfrid Joseph Dixon in the 1950s, can be applied to small (n ≤ 30) and normally-
distributed data sets.

The test requires that data are ordered in increasing or decreasing order, based on the tail
where the suspected datum is located. Afterwards, the following ratio is calculated and then
compared to appropriate critical values:

Here the subscript used for each X value is referred to its order in the series, thus the
suspect value is X1.

In the notation adopted by Dixon for rxy values, x indicates the number of suspected outliers
on the same end of the dataset as the value being tested, whereas y indicates the number
of possible outliers on the opposite end of the data set.

r10 thus represents the statistic to be adopted when the presence of only one outlier is
suspected.



Different compilations of critical values to be compared to Dixon’s r10 parameter are present
in the statistical literature.

Sometimes, discrepancies can be found between different sources, due to:

1) an erroneous use of values calculated for a one-tailed test when a two-tailed test is
actually employed

2) small differences in interpolations performed to find critical values for specific n values.

One of the most recently checked set of critical values for different confidence levels and
sample sizes is that reported by David D. Rorabacher in a paper published on Analytical
Chemistry (63, 1991, 139-146), shown as a table in the next slide.

The set includes data for sample sizes up to n = 30, since the Q-test can be used reliably up
to this sample size, provided that the presence of only one outlier is suspected.

Critical values reported in the following table should not be used if the presence of more
than one outlier is suspected.





Numerical example of Dixon’s Q-test for a single outlier

The following six data have been drawn from a normally-distributed variable:

The test is applied to check if value 0.357 is an outlier.

In this case the suspect value is the lowest one, thus data are ordered in increasing order:

Since n = 6, the following calculation is done:

In the Dixon’s Q-test r10 critical values table, shown in the previous slide, the critical value for
n = 6 is equal to 0.740 for α = 0.01 (the lowest value for which critical values are usually
reported). Since 0.747 > 0.740, value 0.357 is considered an outlier at 99% confidence.

0.505 0.511 0.519 0.478 0.357 0.506

X1 X2 X3 X4 X5 X6

0.357 0.478 0.505 0.506 0.511 0.519



Dixon’s Q-test when more than one outlier is present

In its research Dixon considered also cases in which more than one outlier could be present,
on one or on both ends of the dataset.
Appropriate parameters, to be compared with further set of critical values, were then
defined:

one outlier on both tails

one outlier on the tail under evaluation and two on the other tail

two outliers on the tail under evaluation

two outliers on the tail under evaluation and one on the other tail

two outliers on both tails



As apparent, if x1 is the value under evaluation as a
possible outlier the nearest neighbouring value in
the dataset to be considered is x2 if this is not a
potential outlier, otherwise x3 is considered.

By analogy, the last value in the dataset, xn, can be
considered only if it is not a potential outlier itself,
like for r10 or r20 parameters.
It this is not the case, the last but one, xn-1, or even
the last but two, xn-2, value has to be considered in
the calculation.

In its treatment Dixon generated critical values for all
the parameters cited in the previous slide and for all
sample sizes from 4-5 to 30, according to the case:

A summary of those values for a two-tailed Dixon’s Q
test at a 95% confidence level, taken from the
Rorabacher’s paper, is reported in the figure on the
right:



Grubbs’s test

Grubbs’s test, proposed by the American statistician Frank Ephraim Grubbs in 1950, is
another approach for the identification of outliers in relatively small, normally-distributed
samples.

As for the Dixon’s test, data have to be ordered and one of the following statistics has to be
used, implying the calculation of the sampling mean and standard deviation:

when the potential outlier is the first value in the sample

when the potential outlier is the last value in the sample

The realization of the appropriate statistic is then compared to a critical value, depending, as
usual, on the significance level α and on the sample size.

A table of critical values referred to a unilateral test, i.e., a test performed when the tail in
which the potential outlier is located is known, is shown in the next slide.



Note that critical values
increase at the increase of
n.

This effect is due to the
fact that S is decreased at
the increase of n, thus the
realization of the Grubbs
statistic is increased with n
(given the same difference
between the presumed
outlier and the mean).



Numerical example of Grubbs’s test for a single outlier

The following data set has been obtained after a series of 15 measurements:

Grubbs’s test can be used to evaluate if value 98.0, the first in the set, in increasing order, is
an outlier.

In this case: and

then:

The critical value for n = 15 is 2.549, for α = 0.025, and 2.705, for α = 0.01.

Grubbs’s test indicates that the value 98.0 is an outlier at a significance level of 2.5% but not
at a significance level of 1%.

Notably, the Grubbs’s test can be used also when the presence of more than one outlier is
suspected.



In particular, if the presence of one outlier at each end of the data
series is suspected, the Gn statistic is calculated:

The resulting value is compared with the appropriate critical value, retrieved from the
table shown in the next slide. If it is higher than the critical value both suspected outliers
are rejected.

When two outliers are suspected to be present on the same end of the data series, one of
the following statistics is used, according to the case:

In this case a value of standard deviation referred to the data series but excluding the
possible outliers is also obtained and used in the calculation of the statistic.

Note that Gm becomes smaller as the suspected outliers are further from other data of the
series.
For this reason, as an exception to the usual interpretation, the test result is significant if
the calculated value for Gm is lower than the critical value.





Use of Minitab 18 for outlier detection

The Minitab 18 software enables the detection of outliers based on the Dixon’s and on the 
Grubbs’s tests, once data are transferred into the program Worksheet.
The two tests can be accessed from the Basic Statistics sub-menu of the Stat menu:



Once the Outlier Test window is opened the worksheet column including data to be 
checked is selected, then the Options… button has to be pressed.
A new window is opened, where the type of test, significance level and alternative 
hypothesis (i.e., the hypothesis opposite to the null one, corresponding to the absence of 
outliers) can be chosen:

Note that all the different types of Dixon’s test described before can be performed. 



The output can be read in the program window named Session and can be also reported as 
a plot:  



It is worth noting that the outcome of the two tests can be inferred indirectly also from the 
P value reported at the end of the respective tables:

Indeed, if the P value is higher than the significance level (in this case 0.05) the null 
hypothesis (no outlier is present) is accepted.
If the P value is lower than the significance level the alternative hypothesis (an outlier is 
present) is accepted.

This way of reporting a statistical test’s outcome is very common and will be encountered 
many times in future lessons.



Tukey’s Box-and-Whisker plot

Tukey’s Box-and-Whisker plot, introduced by the American mathematician John Tukey in 
1970,  is one of the most typical examples of box-plots, i.e., graphical representations of the 
dispersion of a dataset with respect to the median and to quartiles, enabling a relatively 
easy evaluation of symmetry and of the presence of eventual outliers.

A rectangle including the median value
and extending from the first (Q1) to the
third (Q3) quartile is drawn as the
«box».
«Whiskers» are segments extending
externally from Q1 and Q3, with a
length usually corresponding to 1.5
times the inter-quartile range (IQR = Q3
- Q1).

In the figure, the comparison between
typical representations of a normal
probability density function and the
Tukey’s box-and-whisker plot is
evidenced.
In this case the box is obviously
symmetric with respect to the median.



It is worth noting that lower and upper 
adjacent values represent values 
located at Q1 – 1.5 IQR and Q3 + 1.5 
IQR, respectively.
Moreover, data suspected to be outliers 
can be drawn as individual points or 
asterisks, located outside the whiskers. 

Alternative Box-and-Whisker plot can 
be drawn with whiskers extending to 
the minimum and maximum observed 
values.

The eventual asymmetry of data 
distribution is easily inferred from the 
Box-and-Whisker plot, since in this case 
the box is not symmetric with respect 
to the median.

Median

Upper quartile (Q3)

Lower quartile (Q1)

Values out of limits

Value out of limits

Upper adjacent value

Lower adjacent value

It is important to point out that no assumption on the underlying statistical distribution is 
made when a Tukey’s Box-and-Whisker plot is drawn.
Consequently, by definition, this plot is an example of non-parametric approach.



An example of Box-and-whiskers plot

Let us suppose that the following dataset (n = 20) was obtained:

Once data are re-ordered in ascending order, the following set is obtained, with intervals 
representing quartile intervals drawn with different colors:

These are the parameters required to draw the corresponding box-and-whiskers plot:

Median = 60 (it is actually the mean between the two central values)
First quartile (Q1) is comprised between 54 and 56  ⇒  (54 + 56) / 2 = 55
Third quartile (Q3) is  comprised between 69 and 73 ⇒  (69 + 73) / 2 = 71
Inter-quartile range (IQR) = 71 – 55 = 16
Lower adjacent value = Q1 – 1.5 IQR = 55 – 24 = 31
Upper adjacent value = Q3 + 1.5 IQR = 71 + 24 = 95

Based on the lower and upper adjacent values, datum 28, on the lower side of the dataset, 
and data 103 and 112, on the upper side of the dataset, can be considered as outliers. 

60, 69, 28, 51, 112, 80, 73, 103, 40, 47, 58, 58, 74, 56, 64, 68, 56, 54, 63, 60

28, 40, 47, 51, 54, 56, 56, 58, 58, 60, 60, 63, 64, 68, 69, 73, 74, 80, 103, 112



The Minitab 18 software can be used to rapidly draw a Box-and-Whisker plot.
The procedure starts by inserting data in the program Worksheet, then the Boxplot… option in 
the Graph menu is selected. The Simple option for Boxplots is selected in this case.



Several parameters can be set inside the Minitab 18’s Simple boxplot window.
The most important ones are accessible through the Data View sub-menu:

In the figure, most typical settings for Box-and-Whisker plots are selected, i.e., the box 
represents the Interquartile (Q3-Q1) range and outliers are represented individually (the 
Outlier symbols option is selected). The appearance in the plot of Median and Mean symbols 
is also selected in the specific case.

C1 is the only column including values in the 
Worksheet, in this case, thus it has to be selected in 
the Graph variables window.



The following plot is obtained using data shown before:

The presence of three outliers, corresponding to values 28, at the lower end of dataset, and 
103 and 112, at the upper end, is easily inferred from the plot.

Note that median (corresponding to the Q2 quartile) is always reported as a transversal 
segment inside the box. Its location closer to the Q1 limit (or, equivalently, further from the 
Q3 limit) implies an asymmetry of data distribution.

mean median (Q2)

outliers

outlier

Q3

Q1



Moreover, if outliers are not present, Minitab 18 considers as whiskers ends the highest and 
the lowest datum. It is worth noting that the calculation of Q1 and Q3 quartiles is based on a 
specific algorithm, as shown in the following example:

Median
26.5 

Q1 = 21

Q3 = 35

In particular, the position of Q1 is considered as (N+1)/4 = 3.25, where N is the total amount 
of data. In terms of value, this means that Q1 is far from 19, the 3rd number in the series, 0.25 
times the distance between 19 and 23, i.e., 0.25 *4 = 1, thus Q1 = 19 + 1 = 20. Similarly, the 
position of Q3 is (N+1)*3/4 = 9.75, thus Q3 = 33 + 0.75 * (37-33) = 33 + 3 = 36.



Median Absolute Deviation (MAD)

The procedure based on the Median Absolute Deviation (MAD) is another example of a non-
parametric approach (i.e., not implying any prior knowledge about data distribution) to the 
detection of outliers.

By definition, MAD is the median of absolute values of deviations of single data from their 
median:

 where:

As an example, given the following 11 observations:

data are first ordered in increasing order:

The median, 6.9, is thus easily recognized and deviations of data from it are easily calculated:



Data expressing the deviations from the median are then ordered themselves:

It is thus easy to recognize their median, 3.2.

In order to identify an outlier, the absolute value of the difference existing between the 
suspected datum and the median of original data is ratioed to the MAD value:

|Xsusp outl. – Median(X)| / MAD

The resulting ratio is finally compared with a critical value, which is usually put equal to 5.

In the cited example, the ratio for the suspected outlier, 29.8, is 7.156.

Since this number is greater than 5 the value 29.8 is discarded as an outlier.

The procedure can be repeated for the second most distant value (from the median), i.e., 
22.2. In this case the resulting ratio is 4.78; since this value is lower than 5, the datum 22.2 
cannot be discarded as an outlier.
It is easy to see that the first value in the original dataset, 2.8, cannot be considered an 
outlier, since the above ratio (4.1/3.2 = 1.281) is much lower than 5.



Treatment of outliers once their presence has been assessed

Once the presence of an outlier in a dataset has been assessed, different approaches can be 
adopted:

1) transforming data
2) discarding the outlier
3) keeping the outlier
4) reaching a compromise (i.e., keeping the outlier but reducing its incidence on the 

information arising from all data)

The most common methods are the following:

1) Using the median instead of the mean, as a measurement of central tendency
2) Trimming
3) Winsorization

Trimming and Winsorization are examples of transformation performed on outliers.



Trimming

Trimming (also called truncation) consists in eliminating a fixed percentage of extreme 
values in a dataset, considering one or both tails.

Different trimming approaches can be used:

1) discarding the highest and the lowest values
2) discarding values included in the first and last 5% of probability density
3) discarding values included in the first and in the last quartiles (25% of probability)

The mean calculated when approach 3), which is one
of the most frequently adopted, is performed, is called 
“interquartile mean”.

As shown in the figure on the right, when a skewed 
distribution (an F distribution in the specific case) is 
considered, there is more variability on one side. 
Since the same amount is trimmed on each side, 
trimming removes a longer portion of the 
distribution on one side than on the other. 
As a consequence, the mean of the remaining points 
is more representative of the location of the bulk of 
the observations.



Winsorization

Winsorization, that is named after the American engineer, physiologist and biostatistician 
Charles Paine Winsor, who proposed the procedure at the end of the 1940s,  consists in the 
replacement of extreme values in a dataset with less extreme values, with the aim of 
attenuating the effect of possible outliers.

As an example, let us consider the following series of 13 data:

Potential outliers (0, 1, 154 and 322) can be seen on both tails of this set; winsorization 
replaces those data with closest ones, thus leading to the following dataset:

As expected, this operation has a remarkable effect on the mean, that is decreased from 
49.5 to 18.7, whereas the median remains the same (18).
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