Outliers

An outlier is an observation clearly differing from other observations of the same group, and
thus it is able to alter significantly one or more parameters like mean, variance and
symmetry.

The search for outliers may have different goals:

v’ estimating the real mean or variance of a phenomenon, once the outlier(s) has(have)
been eliminated

v’ studying the causes that led to the generation of outliers.
The difficulty in the identification of an outlier is due to at least three reasons:

1) presence of masking effects: sometimes an outlier can be “masked” by the presence of
another one;

2) dependence of the outlier recognition on the sample dimension

3) incorrect hypothesis on the data distribution.



As an example, let us consider the following data series:

97 98 98 95 86 99
98 98 97 99 98 95

If only the first row is considered, statistical parameters are significantly different if the value
86 is included or not.

If all the 12 data are considered, mean and standard deviation become closer to those
obtained for the first row when the value 86 is excluded:

Rows 1 + 2

Wlthout 86 With 86

Dimension n

Mean 97.4 95.5 96.5
Standard dev. 1.5 4.8 3.5

Range (max. diff.) 4 11 11

Median 98 97.5 98

It would thus be less likely to consider value 86 as an outlier (unless a specific test is made)
when the sample size is increased.



As a further example, if the following series is obtained for the counts of insects collected in

a trap:
3 3 4 5 7 11
12 15 18 24 51 54
84 120 560

value 560 would likely be considered as an outlier by almost all statistical tests for outlier
recognition, since most of the latter assume a normal distribution.

However, the distribution of insect counts might be highly asymmetric (e.g., because of the
possibility of collecting swarms occasionally).

Great care must then be posed before discarding an observation as an outlier.

Among several approaches available for outlier recognition, the following are the most
common and will thus be considered in next slides:

1) Dixon’s Q-test

2) Grubbs’ test

3) Tukey’s Box-and-Whisker plot (also called box-plot)
4) Median Absolute Deviation (MAD)



Dixon’s Q test for a single outlier

Dixon’s Q test for a single outlier, that is one of a set of tests proposed by the American
statistician Wilfrid Joseph Dixon in the 1950s, can be applied to small (n < 30) and normally-
distributed data sets.

The test requires that data are ordered in increasing or decreasing order, based on the tail
where the suspected datum is located. Afterwards, the following ratio is calculated and then
compared to appropriate critical values:
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Here the subscript used for each X value is referred to its order in the series, thus the
suspect value is X;.

In the notation adopted by Dixon for r, values, x indicates the number of suspected outliers
on the same end of the dataset as the value being tested, whereas y indicates the number
of possible outliers on the opposite end of the data set.

ro thus represents the statistic to be adopted when the presence of only one outlier is
suspected.



Different compilations of critical values to be compared to Dixon’s r,;, parameter are present
in the statistical literature.

Sometimes, discrepancies can be found between different sources, due to:

1) an erroneous use of values calculated for a one-tailed test when a two-tailed test is
actually employed

2) small differences in interpolations performed to find critical values for specific n values.
One of the most recently checked set of critical values for different confidence levels and
sample sizes is that reported by David D. Rorabacher in a paper published on Analytical

Chemistry (63, 1991, 139-146), shown as a table in the next slide.

The set includes data for sample sizes up to n = 30, since the Q-test can be used reliably up
to this sample size, provided that the presence of only one outlier is suspected.

Critical values reported in the following table should not be used if the presence of more
than one outlier is suspected.



Table I. Critical Values of Dixon’s r;, (@) Parameter As Applied to a[T'wo-Tailed Test]at Various Confidence Levels,
Including the 95% Confidence Level®

confidence level

B0% 0% f 95% \ 96 % 98% /~ 99% \
N® (e = 0.20) (@ = 0.10) (o = 0.05) (e = 0.04) (e = 0.02) {a = 0.01)
3 0.886 0.941 0.970 0.976 0.988 0.994
4 0.679 0.765 0.829 0.846 0.889 0.926
) 0.557 0.642 0.710 0.729 0.780 0.821
6 0.482 0.560 0.625 0.644 0.698 0.740
7 0.434 0.507 0.568 0.586 0.637 0.680
8 0.399 0.468 0.526 0.543 0.590 0.634
9 0.370 0.437 0.493 0.510 0.555 0.598
10 0.349 0.412 0.466 0.483 0.527 0.568
11 0.332 0.392 0.444 0.460 0.502 0.542
12 0.318 0.376 0.426 0.441 0.482 0.522
13 0.305 0.361 0.410 0.425 0.465 0.503
14 0.294 0.349 0.396 0.411 0.450 0.488
15 0.285 0.338 0.384 0.399 0.438 0475
16 0.277 0.329 0.374 0,388 0.426 0.463
7 0.269 0.320 0.365 0,379 0.416 0.452
18 0.263 0.313 0.356 0.370 0.407 0.442
19 0.258 0.306 0.349 0.363 0.398 0.433
20 0.252 0.300 0.342 -D.BSIS 0.391 0.425
21 0.247 0.295 0.337 0.350 0.384 0.418
22 0.242 0.280 0.331 0.344 0.378 0.411
23 0.238 0.285 0.326 0.338 0.372 0.404
24 0.234 0.281 0.321 0.333 0.367 0.399
25 0.230 0.277 0.317 0.329 0.362 0.393
29 0.227 0.273 0.312 0.524 0.357 0.388
27 (.224 0.269 0.308 0.320 0.353 0.384
28 0.220 0.266 0.305 0.316 0.349 0.380
29 0.218 0.263 0.301 0.312 0.345 0.376
30 0.215 0.260 0.298 0.309 0.341 0.372

¢In this and the other accompanying tables, the newly generated or corrected values are indicated in boldface. ?Sample size.




Numerical example of Dixon’s Q-test for a single outlier
The following six data have been drawn from a normally-distributed variable:

0.505 0.511 0.519 0.478 0.357 0.506
The test is applied to check if value 0.357 is an outlier.

In this case the suspect value is the lowest one, thus data are ordered in increasing order:

X, X, X, X, X, X,
0.357 0.478 0.505 0.506 0.511 0.519

Since n = 6, the following calculation is done:

X,-X, 0478-0357 0121

= = — 0.747
X,—X, 0519-0357 0.162

Ho =

In the Dixon’s Q-test ry, critical values table, shown in the previous slide, the critical value for
n = 6 is equal to 0.740 for oo = 0.01 (the lowest value for which critical values are usually
reported). Since 0.747 > 0.740, value 0.357 is considered an outlier at 99% confidence.



Dixon’s Q-test when more than one outlier is present

In its research Dixon considered also cases in which more than one outlier could be present,
on one or on both ends of the dataset.
Appropriate parameters, to be compared with further set of critical values, were then

defined:

Xo — Xy
one outlier on both tails m= T
X,y — X
n-1 1
X9~ Xg
one outlier on the tail under evaluation and two on the other tail T2 = Xpg — Xy
n-
X3~ X
two outliers on the tail under evaluation Fog = x_.:;:-
n_ *1
X3 — X1
two outliers on the tail under evaluation and one on the other tail 721 = Xpg = Xy
IE - x1

two outliers on both tails Fog & ——
Ln-g = X1



As apparent, if x, is the value under evaluation as a
possible outlier the nearest neighbouring value in
the dataset to be considered is x, if this is not a
potential outlier, otherwise x; is considered.

By analogy, the last value in the dataset, x,, can be
considered only if it is not a potential outlier itself,
like for ry, or r,, parameters.

It this is not the case, the last but one, x_,, or even

n-12

the last but two, x,,, value has to be considered in
the calculation.

In its treatment Dixon generated critical values for all
the parameters cited in the previous slide and for all
sample sizes from 4-5 to 30, according to the case:

A summary of those values for a two-tailed Dixon’s Q
test at a 95% confidence level, taken from the
Rorabacher’s paper, is reported in the figure on the
right:
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0.863
0.748
0.673
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0.570
0.534
0.505
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0.505
0.485
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0.405
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0.983
0.890
0.786
0.716
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0.614
0.579
0.551
0.527
0.506
0.489
0.473
0.460
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0.437
0.427
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0.410
0.402
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0.374
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0.987
0.913
0.828
0.763
0.710
0.664
0.625
0.592
0.565
0.544
0.525
0.509
0.495
0.482
0.469
0.460
0.450
0.441
0.434
0.427
0.420
0.414
0.407
0.402
0.396
0.391




Grubbs'’s test

Grubbs’s test, proposed by the American statistician Frank Ephraim Grubbs in 1950, is
another approach for the identification of outliers in relatively small, normally-distributed
samples.

As for the Dixon’s test, data have to be ordered and one of the following statistics has to be
used, implying the calculation of the sampling mean and standard deviation:

T=" "1 when the potential outlier is the first value in the sample

T =" when the potential outlier is the last value in the sample

The realization of the appropriate statistic is then compared to a critical value, depending, as
usual, on the significance level o and on the sample size.

A table of critical values referred to a unilateral test, i.e., a test performed when the tail in
which the potential outlier is located is known, is shown in the next slide.



Note that critical values
increase at the increase of

n.

This effect is due to the
fact that S is decreased at
the increase of n, thus the
realization of the Grubbs
statistic is increased with n
(given the same difference
between the presumed

outlier and the mean).

n a=0.10 =005 | a=0025| a=001 | a=0.005 n

3 1.148 1.153 1.155 1.155 1.155 3

4 1.425 1.463 1.451 1.492 1.496 4

5 1.602 1.672 1.715 1.749 1.764 5

6 1.729 1.822 1.887 1.944 1.973 6

7 1.828 1938 2020 2.097 2.139 7

8 1.909 2.032 2126 2221 2.274 8

9 1.977 2.110 2215 2.323 2.387 9

10 2.036 2176 2.290 2.410 2.482 10
11 2.088 2.234 2355 2485 2.564 11
12 2.134 2.285 2412 2.550 2.636 12
13 2.175 2.331 2462 2.607 2.699 13
14 2213 2.371 2.507 2.659 2.755 14
15 2247 2.409 2.549 2705 2.806 15
16 2.279 2443 2.585 2.747 2.852 16
17 2.309 2.475 2.620 2.785 2.894 17
18 2.335 2.504 2.651 2.821 2932 18
19 2361 2.532 2681 2.854 2.968 19
20 2 385 2.557 2709 2.884 3.001 20
21 2 408 2.580 2733 2912 3.051 21
22 2.429 2.603 2.758 2.939 3.060 22
23 2.448 2.624 2.781 2.963 3.087 23
24 2.467 2.644 2.802 2987 3.112 24
25 2.486 2.663 23822 3.009 3.135 25
26 2.502 2.681 2841 3.029 3.157 26
27 2.519 2.698 2.859 3.049 3.178 27
28 2.534 2.714 2876 3.068 3.199 28
29 2.549 2.730 2.893 3.085 3.218 29
30 2.563 2.745 2908 3.103 3.236 30




Numerical example of Grubbs’s test for a single outlier

The following data set has been obtained after a series of 15 measurements:

o T

TN
993 |1 907 | 98,6 | 99,0 | 90,1 | 903 | 00,5 ’\SIE._.'D, 0891994 | 900 | 904 | 09,2 | 08,5 | 90,2

o

Grubbs’s test can be used to evaluate if value 98.0, the first in the set, in increasing order, is
an outlier.

Inthiscase: X =9909 and S =041

_X-X, 99.09-9800 1,09

then: T —
S 0.41 0.41

= 2.00

The critical value for n = 15 is 2.549, for oo = 0.025, and 2.705, for o. = 0.01.

Grubbs’s test indicates that the value 98.0 is an outlier at a significance level of 2.5% but not
at a significance level of 1%.

Notably, the Grubbs’s test can be used also when the presence of more than one outlier is
suspected.



In particular, if the presence of one outlier at each end of the data

series is suspected, the G" statistic is calculated: ¢

The resulting value is compared with the appropriate critical value, retrieved from the
table shown in the next slide. If it is higher than the critical value both suspected outliers
are rejected.

When two outliers are suspected to be present on the same end of the data series, one of
the following statistics is used, according to the case:

: . 2
(_}I — 1) X .3‘2 o (” = 3) X "'cxcluding 2 highest

excluding 2 lowest G

fr—1) %o : (n—1) x 52

In this case a value of standard deviation referred to the data series but excluding the
possible outliers is also obtained and used in the calculation of the statistic.

Note that G™ becomes smaller as the suspected outliers are further from other data of the
series.

For this reason, as an exception to the usual interpretation, the test result is significant if
the calculated value for G™ is lower than the critical value.



n 95% G" 95% G" 99% G" 99% G"
3 1.993 - 2.000 -

4 2.429 0.0002 2.445 0.0000
5 2.755 0.0090 2.803 0.0018
6 3.012 0.0349 3.095 0.0116
7 3.222 0.0708 3.338 0.0308
8 3.399 0.1101 3.543 0.0563
9 3.552 0.1492 3.720 0.0851
10 3.685 0.1864 3.875 0.1150
11 3.803 0.2213 4.012 0.1448
12 3.909 0.2537 4.134 0.1738
13 4.005 0.2836 4244 0.2016
14 4.093 0.3112 4.344 0.2280
15 4.173 0.3367 4.435 0.2530
16 4,247 0.3603 4.519 0.2767
17 4.316 0.3822 4.597 0.2990
18 4.380 0.4025 4.669 0.3200
19 4.440 0.4214 4.737 0.3398
20 4.496 0.4391 4.800 0.3585
21 4.549 0.4556 4.859 0.3761
an 4.599 0.4711 4914 0.3927
23 4.646 0.4857 4.967 0.4085
24 4.691 0.4994 5.017 0.4234
25 4.734 0.5123 5.064 0.4376
26 4.775 0.5245 5.109 0.4510
27 4814 0.5360 5.151 0.4638
28 4.851 0.5470 5.192 0.4759
29 4 886 0.5574 5.231 0.4875
30 492] 0.5672 5.268 0.4985
40 5.201 0.6445 5.571 0.5862
50 5.407 0.6966 5.790 0.6462
60 5.568 0.7343 5.960 0.6901
70 5.700 0.7630 6.098 0.7236
80 5.811 0.7856 6.213 0.7501
90 5.906 0.8040 6.311 0.7717
100 5.990 0.8192 6.397 0.7896




Use of Minitab 18 for outlier detection

The Minitab 18 software enables the detection of outliers based on the Dixon’s and on the
Grubbs’s tests, once data are transferred into the program Worksheet.
The two tests can be accessed from the Basic Statistics sub-menu of the Stat menu:

I} Minitab'18

[™ Minitab - Esercizio Minitab sugli outlier.MPJ

[ ] Worksheet 1 #**
File Edit Data Calc |Stat Graph Editor Tools Window Help Assistant

+ C1 ~ 8|8 x Basic Statistics F§ Display Descriptive Statistics..
[ _I Regression P 7 Store Descriptive Statistics...
ANOVA P | =& Graphical Summary..
1 99.7 Session 5
L DOE * %]\ 1-Sample Z
5 98.6 |2 -Sample Z...
Control Charts "J_ 1-Sample t..
3 99.0 Quality Tools £ 1. 2-Sample t..
4 99.1 Reliability/Survival » Hl Paired t..
Multivariate L4 o _
5 99.3 TTie Series b ~.l ‘Ili‘ropurt!ﬂn...
6 995 Tables y & 2Proportions..
Norparametrics » ., 1-5ample Poisson Rate...
7 98.0 il .
Erndialence Ttz p | b 2-5ample Poisson Rate...
8 98.9 Power and Sample Size p "L 1Variance..
9 99.4 §l. 2 Variances..
10 99.0 11 Coarelation...
- 99.2 0" Covariance..
_ M Normality Test.
12 98.8 B Worksheet 1 + @
+ c1 c2 c3 c4 =L}
13 99.2 - - i A Goodness-of-Fit Test for Poisson...




Once the Outlier Test window is opened the worksheet column including data to be
checked is selected, then the Options... button has to be pressed.

A new window is opened, where the type of test, significance level and alternative
hypothesis (i.e., the hypothesis opposite to the null one, corresponding to the absence of
outliers) can be chosen:

Dixon's Q) ratio
Dixon's r11 ratio

Dixon's r12 ratio
Dixon's r20 ratio
Outlier Test hY Dixon's r21 ratio

] p Dixon's r22 ratio
Qutlier Test; Qutions X

Outier test: ) ENE T |

Significance Ievel:l 0.05

C1 Variables:
C1

What do you want to determine? (Alternative hypothesis)

By variables (optional):

ISmaIIest or largest data value is an outlier

Help | oK Cancel

4

Options... Graphs... |

Smallest or largest data value is an outlier
Results... | Storage... | Smallest data value is an outlier

Largest data value is an outlier

Help | oK | Cancel |
T T T T T T I

Note that all the different types of Dixon’s test described before can be performed.



The output can be read in the program window named Session and can be also reported as
a plot:

Outlier Test: C1 - Outlier Plot of C1 =0 EER [~
Outlier Plot of C1
M eth Od Grubbs' Test
Min  Max G P
Mull hypothesis All data values come from the same normal population nE BD 8 08
Alternative hypothesis  Smallest or largest data value is an outlier
Significance level a =0.05
. . o o § o % e+ o @ .
Grubbs' Test
Variable N Mean StDev Min Max G F
C1 13 99.054 0433 93000 099700 243 0059
* NOTE * Mo outlier at the 5% level of significance
980 982 984 986 988 990 992 994 996 998
Outlier Plot of C1 c

Qutlier Test: C1

" Outlier Plot of C1 = E [
Method Qutlier Plot of C1
Dixon's Q Test
Null hypothesis All data values come from the same normal population 6000 sa00 038 ot
Alternative hypothesis  Smallest or largest data value is an outlier
Significance level o =0.05

Dixon's Q Test

Varnable N Min ¥[2] ®[MN-1] Max 10 P
C1 13 98.000 98600 99500 99700 035 0111

x[i] denotes the ith smallest observation,

* NOTE * Mo outlier at the 5% level of significance

Qutlier Plot of C1




It is worth noting that the outcome of the two tests can be inferred indirectly also from the
P value reported at the end of the respective tables:

Grubbs' Test
Varniable N Mean StDev Min Max G P
C1 13 99.054 0433 98.000 99700 243 ] 0.059
Dixon's Q Test
Vanable N Min ¥[2] x[N-1] Max rl10 P
C1 12 S8.000 S8600 99500 99700 0351 0111

xii] denotes the ith smatlest observation,

Indeed, if the P value is higher than the significance level (in this case 0.05) the null
hypothesis (no outlier is present) is accepted.

If the P value is lower than the significance level the alternative hypothesis (an outlier is
present) is accepted.

This way of reporting a statistical test’s outcome is very common and will be encountered
many times in future lessons.



Tukey’s Box-and-Whisker plot

Tukey’s Box-and-Whisker plot, introduced by the American mathematician John Tukey in
1970, is one of the most typical examples of box-plots, i.e., graphical representations of the
dispersion of a dataset with respect to the median and to quartiles, enabling a relatively
easy evaluation of symmetry and of the presence of eventual outliers.

A rectangle including the median value

IQR
and extending from the first (Q1) to the o1 03
third (Q3) quartile is drawn as the QL - 1.5 x IQR Q3 + 1.5 x IQR
«box». ! !
«Whiskers» are segments extending Median
externally from Q1 and Q3, with a |-4 -3¢ 206 -lo do 16 20 30 4o
length usually corresponding to 1.5 -z.@gsa ~0.67450 0.6{450 2.6;:980

times the inter-quartile range (IQR = Q3
- Q1).

24.65%  50%  24.65%

In the figure, the comparison between , , , e |
—40 =30 -20 -1lco Qo lo 20 30 40

typical representations of a normal
probability density function and the
Tukey’s  box-and-whisker  plot s
evidenced.

In this case the box is obviously | | 68.27% | | |
symmetric with respect to the median. —40 3¢ -—20 -lo 0o 1o 20 30 40

15.73% 15.73%




It is worth noting that lower and upper - .
& PP * +—— Values out of limits

adjacent values represent values 7 *

located at Q1 — 1.5 IQR and Q3 + 1.5 _ Upper adjacent value
IQR, respectively. -
Moreover, data suspected to be outliers -
can be drawn as individual points or |7 . Upper quartile (Q3)

asterisks, located outside the whiskers.

o «— Median
Alternative Box-and-Whisker plot can
be drawn with whiskers extending to i «— Lower quartile (Q1)
the minimum and maximum observed -
values. 7
The eventual asymmetry of data - < Lower adjacent value

distribution is easily inferred from the .
- * <« Value out of limits

Box-and-Whisker plot, since in this case
the box is not symmetric with respect

to the median.

It is important to point out that no assumption on the underlying statistical distribution is
made when a Tukey’s Box-and-Whisker plot is drawn.
Consequently, by definition, this plot is an example of non-parametric approach.



An example of Box-and-whiskers plot

Let us suppose that the following dataset (n = 20) was obtained:
60, 69, 28, 51, 112, 80, 73, 103, 40, 47, 58, 58, 74, 56, 64, 68, 56, 54, 63, 60

Once data are re-ordered in ascending order, the following set is obtained, with intervals
representing quartile intervals drawn with different colors:

28,40, 47, 51, 54] 56, 56, 58, 58, 60,} 60, 63, 64, 68, 69, 73, 74, 80, 103, 112

These are the parameters required to draw the corresponding box-and-whiskers plot:

Median = 60 (it is actually the mean between the two central values)
First quartile (Q1) is comprised between 54 and 56 = (54 +56) /2 =55
Third quartile (Q3) is comprised between 69 and 73 = (69+73)/2=71
Inter-quartile range (IQR) =71 -55=16

Lower adjacent value=Q1-1.5IQR=55-24 =31

Upper adjacent value=Q3 +1.5I1QR=71+24 =95

Based on the lower and upper adjacent values, datum 28, on the lower side of the dataset,
and data 103 and 112, on the upper side of the dataset, can be considered as outliers.



The Minitab 18 software can be used to rapidly draw a Box-and-Whisker plot.
The procedure starts by inserting data in the program Worksheet, then the Boxplot... option in
the Graph menu is selected. The Simple option for Boxplots is selected in this case.

[ Worksheet 1 #+ Editor Tools Window Help

% Minitab 18

+ C1 c2 |_ Scatterplot...
|_ Matrix Plot...

1 28 ‘|#" Bubble Plot..

2 40 D Marginal Plot... Boxplots

3 47 dls Histogram..

4 51 “%_ Dotplot.. one _

5 54 sa* o and-Leaf Simple With Groups

6 56 | Probability Plot.. EH éﬁ

7 56 [l Empirical CDF.. é

g 58 |\ Probability Distribution Plot.. Al

58 lii E : >

9 ! _Boxplot.. Multiple ¥'s

10 60 |+_§ Interval Plot... Simple With Groups

11 60 ! Individual Value Plot..

12 63 Ii Line Plot... é # ‘éé #é

13 64 lgll Bar Chart... Atz 1z
Y1 W2 Y1 Y2

14 68 #) Pie Chart..

15 69 1\ Time Series Plot.. Help | oK cancel

16 3 |§ Area Graph... —

74

LT in Contour Plot...

18 80 =l 3D Scatterplot..

19 103 @ 32D Surface Plot...

20 112




Several parameters can be set inside the Minitab 18’s Simple boxplot window.
The most important ones are accessible through the Data View sub-menu:

Boxplot: One Y, Simple x
Boxplot: Data View X
C1 Graph variables:
a .
Data Display
Data Display
[~ Median confidence interval box

¥ Interquartile range box

Scale... | Labels... | l Data View... | > I_ BEIFIQE.‘ box

¥ Outlier symbols
™ Individual symbols

Multiple Graphs... | Data Options... |

¥ Median symbol

[~ Median connect line

Help | oK | Cancel | ¥ Mean symbaol

[~ Mean connect line

Cl is the only column including values in the
Worksheet, in this case, thus it has to be selected in
the Graph variables window.

Help | oK | Cancel

In the figure, most typical settings for Box-and-Whisker plots are selected, i.e., the box
represents the Interquartile (Q3-Q1) range and outliers are represented individually (the
Outlier symbols option is selected). The appearance in the plot of Median and Mean symbols
is also selected in the specific case.




The following plot is obtained using data shown before:

& Boxplot of C1 b= e S
Boxplot of C1
110 - * .
outliers
ks

100 -
90 -
80 |

_ 70 Q3

o
60 mean median (Q2)
50 | Ql
40 |
30 « | outlier
20 -|

The presence of three outliers, corresponding to values 28, at the lower end of dataset, and
103 and 112, at the upper end, is easily inferred from the plot.

Note that median (corresponding to the Q2 quartile) is always reported as a transversal
segment inside the box. Its location closer to the Q1 limit (or, equivalently, further from the
Q3 limit) implies an asymmetry of data distribution.



Moreover, if outliers are not present, Minitab 18 considers as whiskers ends the highest and
the lowest datum. It is worth noting that the calculation of Q1 and Q3 quartiles is based on a
specific algorithm, as shown in the following example:

o Boxplot of C1 E EE

B Worksheet 1 Boxplot of C1

+ ol c2 c3 ca a 45

1 12 40+

2 16 .

3 19
T* Ql=21 \

5 23 L 304

6 Median RN

L 26.5 B e T —

8 31 Median = 26.5
| te— B

10 37 Q3 =35 - Aﬁﬁm

11 40 N< 12

12 44 N

13

14

]

In particular, the position of Q1 is considered as (N+1)/4 = 3.25, where N is the total amount
of data. In terms of value, this means that Q1 is far from 19, the 3@ number in the series, 0.25
times the distance between 19 and 23, i.e., 0.25 *4 =1, thus Q1 = 19 + 1 = 20. Similarly, the
position of Q3 is (N+1)*3/4 =9.75, thus Q3 =33 + 0.75 * (37-33) =33 + 3 = 36.



Median Absolute Deviation (MAD)
The procedure based on the Median Absolute Deviation (MAD) is another example of a non-
parametric approach (i.e., not implying any prior knowledge about data distribution) to the

detection of outliers.

By definition, MAD is the median of absolute values of deviations of single data from their
median:

MAD = II]Edl&IlUXE — XD where: X = mediau(X)

As an example, given the following 11 observations:

8.9 6.2 7.2 54 3.7 28 | 222 | 127 | 6.9 3.1 | 29.8

data are first ordered in increasing order:

28 | 31 | 37 | 54 | 62 |le69'] 72 | 89 | 127 | 222 | 298

The median, 6.9, is thus easily recognized and deviations of data from it are easily calculated:

4.1 3.8 3.2 1.5 0.7 0.0 0,3 2.0 58 | 153 | 229




Data expressing the deviations from the median are then ordered themselves:
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It is thus easy to recognize their median, 3.2.

In order to identify an outlier, the absolute value of the difference existing between the
suspected datum and the median of original data is ratioed to the MAD value:

X ~ Median(X)| / MAD

susp outl.

The resulting ratio is finally compared with a critical value, which is usually put equal to 5.
In the cited example, the ratio for the suspected outlier, 29.8, is 7.156.
Since this number is greater than 5 the value 29.8 is discarded as an outlier.

The procedure can be repeated for the second most distant value (from the median), i.e.,
22.2. In this case the resulting ratio is 4.78; since this value is lower than 5, the datum 22.2
cannot be discarded as an outlier.

It is easy to see that the first value in the original dataset, 2.8, cannot be considered an
outlier, since the above ratio (4.1/3.2 = 1.281) is much lower than 5.



Treatment of outliers once their presence has been assessed

Once the presence of an outlier in a dataset has been assessed, different approaches can be
adopted:

1) transforming data

2) discarding the outlier

3) keeping the outlier

4) reaching a compromise (i.e., keeping the outlier but reducing its incidence on the
information arising from all data)

The most common methods are the following:
1) Using the median instead of the mean, as a measurement of central tendency
2) Trimming

3) Winsorization

Trimming and Winsorization are examples of transformation performed on outliers.



Trimming

Trimming (also called truncation) consists in eliminating a fixed percentage of extreme

values in a dataset, considering one or both tails.
Different trimming approaches can be used:

1) discarding the highest and the lowest values

2) discarding values included in the first and last 5% of probability density

3) discarding values included in the first and in the last quartiles (25% of probability)

The mean calculated when approach 3), which is one
of the most frequently adopted, is performed, is called
“interquartile mean”.

As shown in the figure on the right, when a skewed
distribution (an F distribution in the specific case) is
considered, there is more variability on one side.
Since the same amount is trimmed on each side,
trimming removes a longer portion of the
distribution on one side than on the other.

As a consequence, the mean of the remaining points
is more representative of the location of the bulk of
the observations.
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Winsorization

Winsorization, that is named after the American engineer, physiologist and biostatistician
Charles Paine Winsor, who proposed the procedure at the end of the 1940s, consists in the
replacement of extreme values in a dataset with less extreme values, with the aim of
attenuating the effect of possible outliers.

As an example, let us consider the following series of 13 data:

0 1 12 13 15 16 18 20

b2
b2
I
n
b
l=

154 | 322

Potential outliers (0, 1, 154 and 322) can be seen on both tails of this set; winsorization
replaces those data with closest ones, thus leading to the following dataset:

12 12 12 13 15 16 18 20 22 25 26 26 26

As expected, this operation has a remarkable effect on the mean, that is decreased from
49.5 to 18.7, whereas the median remains the same (18).
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