ANalysis Of VAriance (ANOVA)

Analysis of variance (frequently abbreviated to ANOVA) is an extremely powerful statistical
technique, that can be used to separate and estimate the different causes of variation when
more than two means are to be compared.

More specifically, it can be used to separate any variation which is caused by changing a
controlled factor from the variation due to random error. It can thus test whether changing
the controlled factor leads to a significant difference between mean values obtained.

Actually, ANOVA can also be used when there is more than one source of random variation.

Consider, for example, the purity testing of a barrelful of sodium chloride. Samples are taken
from different parts of the barrel chosen at random and replicated analyses are performed
on these samples. In addition to the random error in the measurement of the purity, there
may also be variation in the purity of the samples taken from different parts of the barrel.
Since the samples are chosen at random, this variation is sometimes known as a random-
effect factor. Again, ANOVA can be used to separate and estimate the sources of variation.

Both types of statistical analysis now described, i.e., where there is one factor, either
controlled or random, in addition to the random error, are known as one-way ANOVA.



Let us suppose that 13 different groups of students measured the enthalpy variation related
to HCl neutralization with NaOH, each of them making 5 replicated measurements.
Mean values and variances for each group are easily calculated:

Grovp L x| % | % | X | x| X | &

1 56.9 59.2 56.3 58.0 56.9 57.46 1.32
2 53.8 55.4 58.0 59.6 55.5 56.46 5.34
3 58.4 55.0 55.7 56.6 57.2 56.58 1.74
4 58.0 56.4 57.6 57.5 55.0 56.90 1.48
5 57.7 58.5 58.9 57.8 57.4 58.06 0.38
6 54.8 56.4 55.2 60.3 57.1 56.76 4.76
7 57.1 60.4 58.9 55.5 54.7 57.32 5.55
8 58.6 57.8 58.0 55.5 55.6 57.10 2.09
9 58.9 59.8 60.0 57.1 56.4 58.44 2.61
10 59.5 57.7 60.0 57.6 56.8 58.32 1.86
11 57.2 58.2 57.4 55.7 59.1 57.52 1.60
12 55.4 56.1 57.7 56.9 59.2 57.06 2.17

13 55.1 56.8 55.7 61.6 58.3 57.50 6.74

Here the statistical problem is represented by the comparison of the 13 mean values.



In principle, one could make pairwise comparisons between the 13 mean values using a t-
test.

However, if a significance level a (Type | error) is considered for each test, it can be
demonstrated that the error rate related to the family of data (the ensemble of groups),
called Family Wise (FW) error rate, is given by:

C
Olew - 1- (1 - )
where c is the number of comparisons to be made.

As an example, if two independent hypothesis tests are considered, each at a significance
level o, the probability that neither is affected by Type | error is (1-a.)?

Consequently, the probability that at least one test is affected by Type | error is:

a,=1-(1- a)?



If every pair of h means had to be tested, a total of C = h(h-1)/2 t-tests, each at a
significance level a. would be required.

The probability of finding at least one erroneous difference would then be:

ac=1-(1-a)°

As an example, for a = 0.05 and h = 3, which implies ¢ = 3, the probability would be:
Olpyy =1-(1- 0.05)® =0.143

thus a 14% Type | family wise error would be obtained by making pair-wise comparisons
between 3 mean values.

ANOVA is an attempt to keep the family wise error at an acceptable level.



The data table shown before can be generalized, indicating with i the different groups and
with j the different replicates in each group:

J >
Gl"OLlp] X]] X]2 ...... X]] ....... X]n NN(ILl],OQ)
Group 2 X, Xy Xy X5, ~N(u,,o)
Group 1 X, X, ... X; X, ~N(1;, o)
Group h l X, DA Xy e X, ~N(u,,o°)

X; indicates the j-th replicate of the i-th group

n is the number of replicates for each group (in the specific case n is the same for all groups)
h is the number of groups

N =n x h is the total number of data

The basic assumption is that data in each group are extracted from a normal population with
a specific mean but with the same variance as that of other groups. The latter assumption
can be checked preliminarily using one of the tests on multiple variances for normal variables
discussed before (specifically, the Hartley’s or the Bartlett’s tests).



We may describe the observations reported in the table by the linear statistical model
(known as effects model):

i=1,2,..,h

Xyj= pto;+ g j=1,2,..,n

Equation 1

where:

> X; is a random variable denoting the (ij)th observation

» U is a parameter common to all groups (treatments), called the overall mean
> Q; is a parameter associated with the i-th group, called the i-th group effect

» &; is arandom error component.

Note that the model can be expressed also as the so-called means model:

X.= u+e¢ i=12,..,h where:
i M i . . .
j=1,2,..,n M;= pu+a; is the mean of the i-th treatment.

In this form of the model each group defines a population that has mean 4, consisting of
the overall mean u plus an effect a.;, that is specific for that particular group.

As shown in the following figure, referred to the case in which all o, are different from O,
the basic assumption is that errors &; are normally and independently distributed with
mean zero and variance G2.
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The model for each observed response is:

h
X, = ptro;+g with > o =0
i=1



In the case represented by the following figure, all o, are equal to 0, which means that all 4;
are statistically equal.
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Equation 1.

i=1,2,..,h

Xp=ptoiteg .

is the underlying model for a single-factor experiment. Furthermore, since we require that
the observations are taken in random order and that the environment in which the
treatments are used is as uniform as possible, this design is called a completely randomized
experimental design.

Since we are interested in testing the equality of the h group/treatment means:
= Wy = = W =0 =

the null (H,) and the alternative (H,) hypotheses can be formulated as follows:

Ho: W= = = = = 1= U

H, : Hy is not true for at least one couple of values

Equation 2



h
Considering the model given by Equation 1 and that Zal_ =0 H, and H, can be,
equivalently, formulated as follows: i=1

or as:
HO : Xij= “ T 81']'

Hy i X;=W; + €5 foratleast one

—
KT oo

Thus, if the null hypothesis H, is true, each observation consists of the overall mean p plus
a realization of the random error component g;; .

This is equivalent to say that all N observations (or all the h groups) are taken from a normal
distribution with mean p and variance o?.

Therefore, if the null hypothesis is true, changing the levels of the factor (i.e., changing the
group) has no effect on the mean response. Note also that:



ANOVA partitions the total variability related to sample data into two component parts
(between group and within group variability).
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Then, the test of the hypothesis expressed by Equation 2 is based on a comparison of two
independent estimates of the population variance.



The distinction between Total Variability components is expressed graphically in the

following figure:
Total Variability

v '
Within-groups Variability

Between-groups Variability

=

RANDOM ERROR

CONTROLLED OR FIXED-EFFECT
FACTOR

If the null hypothesis is true, a not significant contribution of between-groups variability
should be expected, since the observed variability would be due only to random error.

If the null hypothesis is false, both variabilities would be expected to contribute to the total
variability, being the between-groups variability too high to be explained only by random
error.



Partitioning of the total variability

Xj= pto;tg;

2

Xi-u =0t = (-0t X;- 1)

Equation 1 - model for the observed response

Considering the estimators of £/ and L/;, i.e., X and }_fz., the following equation is
obtained: |

(X, -X)=(x,-X)+(x,,-X)

The deviation of each observation from the grand mean, i.e., the mean of all the values
grouped together, can thus be partitioned into the deviation of the corresponding group’s
mean from the grand mean and the deviation of that observation from its group’s mean.

If both members of the equation are squared and the sums over indexes i and j are
calculated, the following equation can be obtained:

ZZ(X X) _”Z(X X) +ZZ(X X) Equation 3

=1 j=1 =1 j=1

as demonstrated in the following slide.
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Equation 3 is obtained.
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If the abbreviated notation for sum of squares is used, Equation 3 can be written as:

SStot = SSbetween + S§

¥

within

SS;,0¢ = SS + SS

treatment error



To convert Sums of Squares (SS) into comparable measures of variance we need to divide
each of them by the respective degrees of freedom (df).

Sum of Squares Degrees of freedom
(SS) (df)

Between group h-1
Within group h(n-1) = N-h
Total N-1

Note that the degrees of freedom for the within-group sum of squares can be calculated by
considering that the degrees of freedom are additive, thus it results:

N-1 = (h-1) + (N-h)



A Sum of Squares divided by df provides the respective Mean Square (MS):

Source of Sums of Squares Degrees of Mean Squares
variation (SS) freedom (df) (MS)
B - MS, =
etween-group n; (Xi _ X) Sy P
h n . 2 SS
Within- X. —X. N-h MS,, = i
ithin-group zz( = X,) =

i=1 j=I1
h n — 2

Total (X i~ X ) N-1
=1

i=1 j=1



Interestingly, Sum of Squares can be calculated also using the following values:

n
1) Row (group) totals Tl = ZXU

j=1
h
2) Grand total T:ZTi

i=1
: 2
X1 X le Xy, T, T;
X5 X5, ij X5, T, T,?
Xgo  Xp . Xp . X, | T T2
X1 X, th Xi, T, T2
T | 7

This can be demonstrated as follows:



Between-group Sum of Squares
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Total Sum of Squares




The within-group Sum of Squares is obtained by subtraction:

p N L , ) ho
h n T2 ZZ T2 h n Z]:
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i=1 j=1 N) \ n }J) i=1 j=I n

Total Between-group Within-group



Expectation of Mean Squares in one-way (single factor) ANOVA

Expectation of Mean Squares can be calculated using the properties of expectation. Starting
from the Between-group mean square, MS;, the following equations can be written:

SS 2T
E(MSB)ZE( Bj where: §¢ —i=L
h— B N
n
Thus:
S
Z]-; T2
E(SS,)=E| = —E| —
s5.)-5 |- 1)

According to the one-way ANOVA model the following equations can be written:

I, :ZXij :Z(ﬂ+ai+8zj)
. j=1 j=1
X, =u+a,+&; —
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Thus:

k A
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Note that: E(Eij)= 0)

Consequently, when the square of the trinomial reported in the last member is calculated,

all cross-product terms involving g; can be canceled.
As for the further cross-product term resulting from the square of trinomial, i.e., 2 n?u a.,
the following equation can be easily obtained:

iE(Zﬂlﬁ ﬂf,—) = ZHEﬁE(iﬂg) =0
i

i=1
Expectations of cross-terms products resulting from
Thus: the square of g; sum are equal to 0
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Since: ZE(EJ): no-
Jj=1

the previous equation can be written as follows:

h
2
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Finally:
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Let us now consider the second term in the expression of E(SSg):

" 2
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As before, the expected value of the cross-terms resulting from the square of the binomial
in the last expression is equal to zero, therefore:

nh

. = 2
TE h o n

ALl Wi’ +E| > > e, =L(h2n2,u2+hnc72)=hn,u2+0'2
N_ nh i=1 j=1




Combining the expressions evidenced by red rectangles in the last two slides, the following
expression for E(SSg) is obtained:

A h
:Em'uz +nZal.2 +hc%—Ehn,u2 +02ﬂ= 62(h —1)+ ”Zaiz

Therefore: , A
2(h=1)+ ? ’
55, o*(h-1) nzl:a 2 nZI:a
E(MS,)=E — l A —
h—1 h—1 h—1

If 62 is defined as: J}%, =

The following expression is finally obtained:

E(MS,)=0c’+no;



If the Within-group mean square, MS,,, is considered, the following equations can be written:

E(MSW):E( 55, j {ZZX —%lzhl:z?}

N—h i=1 j=1
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The results obtained so far can be summarized using the following table:

Source of
variation
h
Between Zﬂz T2 w MS. SS, o2+ no.2
rou == /|
group . N
Zh: )
T
Ly P j SS
Wlthln Z XUZ =l N_h MSW = W 02
group P n N-—h
h n T2
Total Z X UZ —— N-1
i=1 j=1 N
e

If Hy is true (i.e., all a; = 0) GF2 =0 ( Gfr:%) thus the between-group mean square

MS, is an unbiased estimator of G2, i.e., of the random error.

If H, is true (i.e., some, or all, o, # 0) 0,2 >0 and MS; estimates &2 plus a positive
term that incorporates the variation due to the systematic difference in group means.



Interestingly, the within-group mean square MS,, is an unbiased estimator of  ? regardless
of whether or not H, is true, which is reasonable.

Under the assumption that each of the h groups can be modeled as a normal distribution, it
can be shown that:

B ..
Fy = is distributed as F, ; \.,
If the alternative hypothesis, H,, is true, the expected value of F, numerator is higher than
that of the denominator.
Consequently, H, should be rejected if the realization of F, is larger than the critical value.

This implies the consideration of an upper-tail (one tail) critical region, i.e., the
consideration of a F, ; |, 1 @s critical value.



. 0.8
As an example, let us consider

the F, 5, distribution:

0.6

acceptance<{a|C> rejection

If oo = 0.05, the critical value

0.4
corresponds to 2.69.

Consequently, if F, < 2.69, H,
is accepted at a 5%
significance level.

0.2

0.0

Note that the same test can be made also using the P-Value, which corresponds to the area
underlying the F curve, as calculated from the value assumed by F, to infinity.

If P-value > o H, is accepted, if P-value < a H, is rejected.



The typical format of an ANOVA table provided by a statistical software is:

Source of F ratio F itical
variation

Between
MS Tail area
roups
group F = B fromF, Fhinh (1-a)
Within groups SS,, N-h MS MS w  toinfinity
Total SS; N-1
Source of variation SS df MS F P-value F crit
Between-sample 7.84 ! 1.96 30 5.34E-07 3.056
Within-sample 0.98 15 0.0653
Total 8.82 19




Fixed versus Random Factors in the Analysis of Variance

In the preceding sections the standard analysis of variance (ANOVA) for a single-factor
experiment was discussed by assuming that the factor was a fixed factor. The term “fixed
factor” means that the levels of the factor of interest could be set appropriately during the
experiment.

Sometimes the levels of a factor are selected at random from a large (theoretically infinite)
population of values. This leads to the random-effects ANOVA model.

The model can be formally expressed as before:

X;= pHto;Tg;

However, the treatment effects, o, are random variables, assumed to be normally and
independently distributed, with mean zero and variance ¢ 2.

The variance of an observation can be then expressed as:

V(X)) = V(u+o; +¢g)= V(o) +V(g)) =0,> + 07



All of the computations in the random effect model are the same as in the fixed effect
model, but since an entire population of treatments is studied, it does not make much sense
to formulate hypotheses about the individual factor levels selected in the experiment.

Instead, the following hypotheses about the variance of the treatment effects are tested:

The test statistic for these hypotheses is the usual F-ratio: MS;,.atments’ MS

Error:

If the null hypothesis is accepted there is no significant variability in the population of
treatments (i.e., related to the random factor), while if the null hypothesis is rejected there
is a significant variability among the treatments in the population that was sampled.

Notice that the conclusions of ANOVA extend to the entire population of treatments.



The expected mean squares in the random model are different from their counterparts in
the fixed effects model. It can be shown that:

— 2 2
E(MSTreatments) =0°Tn O,

EMS,,. . )= c?

rror

Frequently, the goal of an experiment involving random factors is to estimate the variance
components.

A logical way to do this is to equate the expected values of the mean squares to their
observed values and solve the resulting equations. This leads to:

5-2 — E(MSError)

&2 — E(MSTreatments )_ E(MSError)

(94

n



Examples of ANOVA applications

1) Tensile strength of paper

A manufacturer of paper used for making grocery bags is interested in improving the
tensile strength of the product. Product engineers think that tensile strength is a function
of the hardwood concentration in the pulp and that the range of hardwood concentrations
of practical interest is between 5% and 20%.

A team of engineers responsible for the study decides to investigate four levels of
hardwood concentration: 5%, 10%, 15%, and 20%.

They decide to make up six test specimens at each concentration level, using a pilot plant.
All 24 specimens are tested on a laboratory tensile tester, in random order.

The data obtained from this experiment are shown in the following table:

Tensile Strength of Paper (psi)

Observations

Hardwood

Concentration ( %) 1 2 3 4 5 6 Totals Averages
5 7 by 15 11 9 10 6l 10,00
10 12 17 13 18 19 15 E 15.67
15 14 18 19 17 16 I8 102 17.00

20 19 25 22 23 18 20 127 21.17

383 15.96
]|




This is an example of a completely randomized single-factor experiment with four levels
of the factor.

The role of randomization in this experiment is extremely important. By randomizing the
order of the 24 runs, the effect of any nuisance variable that may influence the observed
tensile strength is approximately balanced out.

An example of nuisance variable could be a warm-up effect on the tensile strength testing
machine, leading to increasing values with operating time.

If all 24 runs were made in order of increasing hardwood concentration (that is, all six 5%
concentration specimens were tested first, followed by all six 10% concentration
specimens, etc.), then the observed differences in tensile strength might also be due to
the warm-up effect.

A Box-and-Whisker plot can be adopted to represent data in a useful way.



The figure suggests that changing the
hardwood concentration has an effect on
tensile  strength;  specifically, higher
hardwood concentrations produce higher
observed tensile strengths.

Furthermore, the distribution of tensile
strength at a particular hardwood level is
generally not very asymmetric, and the
variability in tensile strength does not seem
to change dramatically as the hardwood
concentration changes.

A comparison between variances can be
made preliminarily to confirm this
hypothesis.
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As shown before, the Minitab 18 software can be exploited to compare variances. They can
be selected by accessing the “Test for equal variances” option in the Stat > ANOVA> menu.

As an example, the Bartlett test, assuming a normal distribution for data in each group,
indicates a p-value 0.769, thus suggesting that no significant difference is present between

the variances.

The Levene’s test is consistent, giving a p-value 0.623.

The Minitab 18’s plot reporting confidence intervals for standard deviations of different
groups, emphasizes the fact that an overlap occurs between them:

+ Test for Equal Variances: 5; 10; 15; 20

EIenCx"

Test for Equal Variances: 5; 10; 15; 20

Multiple comparison intervals for the standard deviation, a = 0.05

10 -

154

20 |

Multiple Comparisons
P-Value 0733

Levene's Test
P-Value 0.623

.i

2 3 4 5 6 7 8

If intervals do not overlap, the corresponding stdevs are significantly different.




Manual ANOVA calculations

&, TP PR » (383)° |
SSTO”’:Z;Z;XU'_W =(7)" +(8)" +---+(20)" - o =512.96
=l j=

h
T2
SS - le T (60)" +(94)" +(102)° +(127)° (383
o N 6 24

Treatments
h
h n ZT;z
SS tror = D, D X —— =512.96-382.79 =130.17
i=1

)2
= 382.79

MS =382.79/3 =127.597 MS; . =130.17/20 = 6.508

Treatments Error

F,=127.597/6.508 = 19.61

Since the critical value for o = 0.01 is F3 54 5. 99) = 4.94, Hy should be rejected, thus the sample
means differ significantly. This can be inferred also from the P-value, which is 3.59 x 10°.



ANOVA calculations with the Minitab 18 software

[ rg
'|Stat Graph Editor Tools Window Help Assistant
|| Worksheet 1 **
Basic Statistics » | @0 “ ] =0 [ [
t = = 3 c4 C5 Regression M L x| e T
= 10 15 20 ANOVA 2l One-Way..
1 7 12 14 19 DOE » | 5= Analysis of Means...
2 8 17 18 25 Control Charts ¥ | 4ty Balanced ANOVA..
3 15 13 19 22 Quality Tools 4 General Linear Model >
4 11 18 17 23 Reliability/Survival 4 Mixed Effects Model »
Multivariate 4 Fully Nested ANOVA...
5 9 19 16 18 e } fc Fully
ime Series A
6 10 15 18 20 ey General MANOVA..
Tables g _
7 Nonparametrics > i:‘ Test for Equal Variances..
Interval Plot...
8 Equivalence Tests [ \_§ : E_WE ©
Power and Sample Size » L LB s
=% Interaction Plot...

In the worksheet different factors
(treatments) are represented by different
columns, whereas levels (replicates) are
represented by different rows.



One-Way Analysis of Variance bt

1 5 IResponse data are in a separate column for each factor level LI
c2 10
C3 15
4 20 Responses:
|5|_|2U||
Options... Comparisons... | Graphs...

Results... Storage... |

oK | Cancel |
One-Way Analysis of Variance: Options *
¥ Assume equal variances
Confidence level: I a5 (for table of means and interval plot)
Type of confidence interval: ITwo—sided LI

Help | [o]4 Cancel |

One-Way Analysis of Variance: Graphs X

Data plots
i

¥ Interval plot

v
Iv Boxplot of data

Residual plots
&+ Individual plots

[” Histogram of residuals
[~ Wormal probability plot of residuals

[ Residuals versus fit

" Three in one

Help | 0K | Cancel |

Different options (in the present case
variances are assumed to be equal, based
on the comparison of variances) and
graphical representations of results can
be selected.




D Session

One-way ANOVA: 5; 10; 15; 20

Method

Mull hypothesis All means are equal
Alternative hypothesis Mot all means are equal
Significance level o = 0.05

Equal varionces were assumed for the analysis.

Factor Information

Factor  Levels Values
Factor 4 5 10:15; 20

Analysis of Variance

Source DF Adiss AdjMS  F-Value P-Value
Factor 3 3828 127.597 19.61 0.000
Error 20 130.2 6.508

Total 23 513.0

Model Summary
5 R-sq R-sglad)) R-sgipred)

255114 74.62% 70.82% 63.46%
Means

Factor N Mean StDev 95% Cl

5 6 10.00 2.83 (7.83;12.17)
10 6 15.67 2.80 (13.49: 17.84)
15 & 17.000 1.789 [14.827:19.173)
20 & 217 2.64 (18.99: 23.34)

) Popied StDev = 255114

" Interval Plot of 5; 10; ...

=8 EEE =%
Interval Plot of 5; 10; ...
95% CI for the Mean
25
20+
=
0 55
10+
: 10 15 20
The pooled standard deviation is used to calculate the intervals.
" Boxplot of 5, 10; ... F=2cE %"
Boxplot of 5; 10; ...
25+
20
E
8 154
10-|
S_ T T T T
10 15 20




2) Stability of a fluorescent reagent stored under different conditions

Table of data:

Conditions Replicate measurements Mean

A Freshly prepared 102, 100, 101 101

B Stored for 1 hour in the dark 101, 101, 104 102

C Stored for 1 hour in subdued light 97, 95, 99 97

D Stored for 1 hour in bright light 90, 92, 94 92
Overall mean 98

Mean squares can be calculated according to the first definition:

Source of variation Sum of squares Degrees of freedom
. - Y — ¥ 2 = — =
Between-sample nZ (X,— X)° =186 h-1=3 |\/|SB - 62
Within-sample Z 2 (x;— %)* =24 h(n—1)=8 »
T MS,, = 3
Total Y Y (x,—-%)?*=210 hn—1=11
T

Since F, = 62/3 = 20.7 and the critical value is 4.066 (o = 0.05), H, should be rejected, thus
the sample means differ significantly.



Minitab 18 output

One-way ANOVA: Freshly prepared; 1 hour in the dark; 1 ... bright light

Method
Mull hypothesis All means are equal
Alternative hypothesis Mot all means are equal
Significance level o =005

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

Factor 4 Freshly prepared; 1 hour in the dark; 1 hour in subdued light; 1 hour in
bright light
" Interval Plot of Freshly prep; 1 hour in th; ... E@
Analysis of Variance Interval Plot of Freshly prep; 1 hour in th; ...
Source DF  AdjSS AdjMS F-Value P-Value 95% Cl for the Mean
Factor 3 18600 62000 2067  0.000 rEs
Error 8 24.00 3.000
104 -
Total 11 210.00
102 |
Model Summary 100
S R-sq R-sglad)) R-sgipred) S og
s ]
1.73205 B8.57% 84.29% 74.29% 3
96|
Means 94-
Factor M Mean jhtDev 95% Cl 92
Freshly prepared 3 101.000 [ 1.000 (98.694; 103.306)
1 hour in the dark 310200/ 173 (99.69: 104.31) 90
1 hour !n Su_bduefd light 3 97.00 200 (54.69;99.31) Freshly ;I)repared 1 hour in the dark 1 hour in subdued light 1hourin I:;right light
1 hour in bright light 3 92.00 200  (89.58; 94.31) o _
The pooled standard deviation is used to calculate the intervals.

Pooled 5tDev = 1.73205

v
Note that the P value in the ANOVA table, rounded off to the third decimal place, is O.



3) Example of ANOVA with a random-effect factor: purity testing of a barrel of sodium
chloride.

The following values were obtained after replicating four times the purity testing on five
samples of sodium chloride taken from different parts of a barrel, chosen at random:

Sample Purity (%) Mean

A 98.8, 98.7, 98.9, 98.8 98.8
B 99.3, 98.7, 98.8, 99.2 99.0
C 98.3, 98.5, 98.8, 98.8 98.6
D 98.0, 97.7,97.4, 97.3 97.6
E 99.3, 994, 99.9, 994 99.5

In this case two possible sources of variation can be hypothesized for the observed purity:

1) random error in the measurement of purity, given by the measurement variance c?

2) variations in the sodium chloride purity at different points in the barrel, accounted for
by sampling variance, corresponding to ¢, defined before.



These are the results obtained from ANOVA calculations:

Source of variation SS dr MS F P-value F crit
Between-sample 7.84 = 1.96 30 5.34E-07 3.056
Within-sample 0.98 15 0.0653

Total 8.82 19

As apparent, since the realization of the F statistic, 30, is much higher than the critical
value (3.056), a significant difference exists between the purity of the different samples.

It is worth recalling that in this case the expected value for the between-sample-mean
square is given by:

E(MSg) = 0% + nof

Consequently, considering that o? corresponds to MS,, the following calculation can be
made to obtain an estimate of the sampling variance:

6,2 = (E(MSg) — 62)/n = (1.96 - 0.0653)/4 = 0.47



4) Example of ANOVA with a complete evaluation of assumptions

Let us reconsider the set of 65 (5 replicates obtained by each of 13 groups) enthalpy
variations (kJ/mol) values measured for the neutralization of NaOH with HCI:

Grovp L x| % | % | % | % | X | &

1 56.9 59.2 56.3 58.0 56.9 57.46 1.32
2 53.8 55.4 58.0 59.6 55.5 56.46 5.34
3 58.4 55.0 55.7 56.6 57.2 56.58 1.74
4 58.0 56.4 57.6 57.5 55.0 56.90 1.48
5 57.7 58.5 58.9 57.8 57.4 58.06 0.38
6 54.8 56.4 55.2 60.3 57.1 56.76 4.76
7 57.1 60.4 58.9 55.5 54.7 57.32 5.55
8 58.6 57.8 58.0 55.5 55.6 57.10 2.09
9 58.9 59.8 60.0 57.1 56.4 58.44 2.61
10 59.5 57.7 60.0 57.6 56.8 58.32 1.86
11 57.2 58.2 57.4 55.7 59.1 57.52 1.60
12 55.4 56.1 57.7 56.9 59.2 57.06 2.17

=
w

55.1 56.8 55.7 61.6 58.3 57.50 6.74



As a first step, the overall normality of data can be assessed. A Gmesh Ed”‘:’ L2y Ll el |
-* Scatterplot...

histogram of data, accompanied by a gaussian fit, can be e

generated for a preliminary evaluation. @ Bubble Plot..
D Marginal Plot...

o e . L istog o
In the Minitab 18 software, the graph can be drawn by accessing
i . . . ., Dotplot..
the Graph > Histogram... path and then selecting the With fit 2 Stem-and-Leaf..
option: [ Probability Plot..
|~ Empirical CDF..
/. Probability Distribution Plot..
Histograms X Histogram of C1
Normal
Simple Wlth Fit Mean 5734
u StDev 1651
Iﬂ — N ®
>
With Fit and =
With Groups Groups 2
|M |
Help oK Cancel |

In this case a gaussian probability density function with mean = 57.34 and standard
deviation = 1.651 seems to fit experimental data appropriately.



The test for normality can be also performed using Minitab 18 , by accessing the Normality
Test... option in the Stat > Basic Statistics menu. The Kolmogorov-Smirnov test is available,
among others.

1l Minitab - Esercizio Minitab normalita.MPJ
“ File Edit Data Calc |Stat Graph Editor Tools Window Help Assistant

= ‘ = ‘ I Basic Statistics X Display Descriptive Statistics... |
IFigure Region ~v|¢  Regression » 7§ Store Descriptive Statistics... -
ANOVA P -Z Graphical Summary.. [
DSess'm DOE .
/| 1-Sample Z..
Probability p| ~ control Charts Y 4 1-samplet.
Probability Plot cually Taoks ’ 10 2-samplet.
Reliability/Survival 4 1 Paired t..
Multivariate » .
= 1P rtion...
Time Series p | T rroportion .
Tables R At 2 Proportions.. Normality Test x
. - 1-Sample Poisson Ra
Monparametrics > Il:l‘ ss e por R] c1 Variahle:
Equivalence Tests p b et
. Power and Sample Size | L 1 Variance.. Percentile Lines
E"~"‘~"C"<S'1€€t ] EEE AL 2 Variances... (" Mone
. cl 2 3 c4 = ( AtYvalues: |
0* Covariance.. (" At data values: I
1 56.9 5
§i Normality Test...
2 3.8 : Tests for Normality
@+ Qutlier Test...
3 58.4 (" Anderson-Darling
4 58.0 A Goodness-of-Fit Test " Ryan-Joiner (Similar to Shapiro-Wilk)
5 5.7 ® Kolmogorov-Smirnov
6 54.8
7 57.1 Select | Title: I
8 58.6
2 58.9 Help | oK Cancel
10 59.5




In the case of Minitab 18 the
Kolmogorov-Smirnov (KS) plot is
linearized by using an
appropriate vertical scale.

Dots correspond to steps in the
typical KS plots, whereas the red
line correspond to the sigmoidal
curve for the theoretical normal
cumulative distribution function.

' Probability Plot of C1

=B )

Percent

99.9

Probability Plot of C1

Normal

Mean 57.34
StDev 1.651
N 65
KS 0.087
P-Value =0.150

If dots are closed to the red line, as in this case, data are likely to be distributed according to
a Gaussian function at a 5% significance. This outcome is confirmed, in mathematical terms,
by the fact that the P-value in this case is greater than 0.150.



As for variances, the Bartlett’s test provides a p-value of 0.485, whereas the Levene’s test
provides a p-value 0.770, thus indicating that variances related to the 13 groups of data are
not significant different.

The ANOVA table generated by the Minitab 18 software shows a relatively low value for the
F-Value (the name used for F, in the program), leading to a p-value of 0.755:

Analysis of Variance

Source DF  AdjSS AdjMS  F-Value P-Value
Factor 12 2390 1.991 0.69 0.755
Error 22 150.58 2.896

Total 64 17448

As a consequence, no significant difference can be inferred between the 13 groups of data
in terms of mean values.
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