
ANalysis Of VAriance (ANOVA)

Analysis of variance (frequently abbreviated to ANOVA) is an extremely powerful statistical 
technique, that can be used to separate and estimate the different causes of variation when 
more than two means are to be compared.

More specifically,  it can be used to separate any variation which is caused by changing a 
controlled factor from the variation due to random error. It can thus test whether changing 
the controlled factor leads to a significant difference between mean values obtained.

Actually, ANOVA can also be used when there is more than one source of random variation. 

Consider, for example, the purity testing of a barrelful of sodium chloride. Samples are taken 
from different parts of the barrel chosen at random and replicated analyses are performed 
on these samples. In addition to the random error in the measurement of the purity, there 
may also be variation in the purity of the samples taken from different parts of the barrel. 
Since the samples are chosen at random, this variation is sometimes known as a random-
effect factor. Again, ANOVA can be used to separate and estimate the sources of variation.

Both types of statistical analysis now described, i.e., where there is one factor, either 
controlled or random, in addition to the random error, are known as one-way ANOVA. 



Let us suppose that 13 different groups of students measured the enthalpy variation related 
to HCl neutralization with NaOH, each of them making 5 replicated measurements.
Mean values and variances for each group are easily calculated:

Here the statistical problem is represented by the comparison of the 13 mean values.

Group x1 x2 x3 x4 x5 x s2

1 56.9 59.2 56.3 58.0 56.9 57.46 1.32

2 53.8 55.4 58.0 59.6 55.5 56.46 5.34

3 58.4 55.0 55.7 56.6 57.2 56.58 1.74

4 58.0 56.4 57.6 57.5 55.0 56.90 1.48

5 57.7 58.5 58.9 57.8 57.4 58.06 0.38

6 54.8 56.4 55.2 60.3 57.1 56.76 4.76

7 57.1 60.4 58.9 55.5 54.7 57.32 5.55

8 58.6 57.8 58.0 55.5 55.6 57.10 2.09

9 58.9 59.8 60.0 57.1 56.4 58.44 2.61

10 59.5 57.7 60.0 57.6 56.8 58.32 1.86

11 57.2 58.2 57.4 55.7 59.1 57.52 1.60

12 55.4 56.1 57.7 56.9 59.2 57.06 2.17

13 55.1 56.8 55.7 61.6 58.3 57.50 6.74



In principle, one could make pairwise comparisons between the 13 mean values using a t-
test.

However, if a significance level α (Type I error) is considered for each test, it can be 
demonstrated that the error rate related to the family of data (the ensemble of groups), 
called Family Wise (FW) error rate, is given by:

αFW = 1- (1 - α )c

where c is the number of comparisons to be made.

As an example, if two independent hypothesis tests are considered, each at a significance 
level α, the probability that neither is affected by Type I error is (1-α)2

Consequently, the probability that at least one test is affected by Type I error is:

α2 = 1 - (1- α)2



If every pair of h means had to be tested, a total of C = h(h-1)/2 t-tests, each at a 
significance level α would be required.

The probability of finding at least one erroneous difference would then be:

As an example, for α = 0.05 and h = 3, which implies c = 3, the probability would be:

thus a 14% Type I family wise error would be obtained by making pair-wise comparisons 
between 3 mean values.

ANOVA is an attempt to keep the family wise error at an acceptable level.

αFW = 1 - (1 - 0.05)3   = 0.143

αC = 1 - (1 – α)C



The data table shown before can be generalized, indicating with i the different groups and 
with j the different replicates in each group:
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Xij indicates the j-th replicate of the i-th group
n is the number of replicates for each group (in the specific case n is the same for all groups)
h is the number of groups
N = n × h  is the total number of data

The basic assumption is that data in each group are extracted from a normal population with 
a specific mean but with the same variance as that of other groups. The latter assumption 
can be checked preliminarily using one of the tests on multiple variances for normal variables 
discussed before (specifically, the Hartley’s or the Bartlett’s tests).



We may describe the observations reported in the table by the linear statistical model 
(known as effects model):

Xij =  µ + αi + εij 
i = 1,2,…,h
j = 1,2,…,n

where:

 Xij is a random variable denoting the (ij)th observation 
 µ  is a parameter common to all groups (treatments), called the overall mean 
 αi  is a parameter associated with the i-th group, called the i-th group effect 
 εij   is a random error component. 

Note that the model can be expressed also as the so-called means model:

Xij =  µi  + εij 
i = 1,2,…,h
j = 1,2,…,n

where: 
µi = µ + αi  is the mean of the i-th treatment. 

Equation 1

In this form of the model each group defines a population that has mean µi, consisting of 
the overall mean µ plus an effect αi, that is specific for that particular group. 

As shown in the following figure, referred to the case in which all αi are different from 0, 
the basic assumption is that errors εij   are normally and independently distributed with 
mean zero and variance σ2.
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The model for each observed response is:       

                                           with



µ1 = µ2 =…= µi = …= µh  = µ

εij = Xij - µi
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In the case represented by the following figure, all αi are equal to 0, which means that all µi
are statistically equal.



Equation 1:

is the underlying model for a single-factor experiment. Furthermore, since we require that 
the observations are taken in random order and that the environment in which the 
treatments are used is as uniform as possible, this design is called a completely randomized 
experimental design.

Xij =  µ + αi + εij 
i = 1,2,…,h
j = 1,2,…,n

Since we are interested in testing the equality of the h group/treatment means:

the null (H0) and the alternative (H1) hypotheses can be formulated as follows:

µ1 = µ2 =…… = µi = … = µh 

H0 :  µ1 = µ2 =…… = µi = … = µh = µ

H1 : H0 is not true for at least one couple of values
Equation 2



H0 :  α1 = α 2 =…… = α i = … = α h = 0

H1 : αi ≠ 0    for at least one i

Considering the model given by Equation 1 and that H0 and H1 can be,
equivalently, formulated as follows:
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or as:

H0 : Xij = µ +  εij

H1 : Xij = µi +  εij

µ +  αi

for at least one i

Thus, if the null hypothesis H0 is true, each observation consists of the overall mean µ plus 
a realization of the random error component εij .
This is equivalent to say that all N observations (or all the h groups) are taken from a normal 
distribution with mean µ and variance σ2 . 

Therefore, if the null hypothesis is true, changing the levels of the factor (i.e., changing the 
group) has no effect on the mean response. Note also that:

εij ∼ N(0, σ2) E(εij) = 0 E(εij
2) = σ2 



ANOVA partitions the total variability related to sample data into two component parts 
(between group and within group variability).

Here we would almost certainly 
reject the null hypothesis.

Between-group variation is small 
compared to within-group variation

Here we would likely accept the 
null hypothesis.

µ1 µ3

µ2µ

µ2

µ1

µ3

µ

Between-group variation is large 
compared to within-group variation

Then, the test of the hypothesis expressed by Equation 2 is based on a comparison of two 
independent estimates of the population variance.



Total  Variability

Between-groups Variability Within-groups Variability

RANDOM ERRORCONTROLLED OR FIXED-EFFECT 
FACTOR 

If the null hypothesis is true, a not significant contribution of between-groups variability 
should be expected, since the observed variability would be due only to random error.

If the null hypothesis is false, both variabilities would be expected to contribute to the total 
variability, being the between-groups variability too high to be explained only by random 
error.

The distinction between Total Variability components is expressed graphically in the 
following figure: 



Xij =  µ + αi + εij Equation 1 - model for the observed response 

Xij - µ  = αi + εij  = (µi - µ) + (Xij - µi )
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Considering the estimators of µ and µi , i.e., anand  , the following equation is
obtained:

The deviation of each observation from the grand mean, i.e., the mean of all the values 
grouped together, can thus be partitioned into the deviation of the corresponding group’s 
mean from the grand mean and the deviation of that observation from its group’s mean.

If both members of the equation are squared and the sums over indexes i and j are 
calculated, the following equation can be obtained:

as demonstrated in the following slide.

Partitioning of the total variability

Equation 3
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Since:

Equation 3 is obtained.
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Within-group sum 
of squares, SSwithin

Between-group sum 
of squares, SSbetween

If the abbreviated notation for sum of squares is used, Equation 3 can be written as:

SStot =  SSbetween +   SSwithin

SStot =  SStreatment +   SSerror



To convert Sums of Squares (SS) into comparable measures of variance we need to divide 
each of them by the respective degrees of freedom (df).

Sum of Squares
(SS)

Degrees of freedom
(df)

Between group h-1

Within group h(n-1) = N-h  

Total N-1

Note that the degrees of freedom for the within-group sum of squares can be calculated by 
considering that the degrees of freedom are additive, thus it results:

N-1 = (h-1) + (N-h)



A Sum of Squares divided by df provides the respective Mean Square (MS):
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Interestingly, Sum of Squares can be calculated also using the following values:

1) Row (group) totals

2) Grand total
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This can be demonstrated as follows:



Between-group Sum of Squares



Total Sum of Squares



The within-group Sum of Squares is obtained by subtraction:
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Expectation of Mean Squares in one-way (single factor) ANOVA

Expectation of Mean Squares can be calculated using the properties of expectation. Starting
from the Between-group mean square, MSB, the following equations can be written:
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According to the one-way ANOVA model the following equations can be written:
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Thus:

Note that:

Consequently, when the square of the trinomial reported in the last member is calculated,
all cross-product terms involving εij can be canceled.
As for the further cross-product term resulting from the square of trinomial, i.e., 2 n2µ αi,
the following equation can be easily obtained:

Thus:

( ) 0=ijE ε

Expectations of cross-terms products resulting from 
the square of εij sum are equal to 0



Finally:

Since:

the previous equation can be written as follows:



Let us now consider the second term in the expression of E(SSB):

As before, the expected value of the cross-terms resulting from the square of the binomial
in the last expression is equal to zero, therefore:
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Combining the expressions evidenced by red rectangles in the last two slides, the following
expression for E(SSB) is obtained:
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If the Within-group mean square, MSW, is considered, the following equations can be written:
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The following equations can be written:



The results obtained so far can be summarized using the following table:

Source  of 
variation SS df MS E(MS)
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If H1 is true (i.e., some, or all, αi ≠ 0) σF 
2 > 0 and MSB estimates σ  

2 plus a positive 
term that incorporates the variation due to the systematic difference in group means. 

If H0 is true (i.e., all αi = 0) σF 
2 = 0 ( ) thus the between-group mean square

MSB is an unbiased estimator of σ 
2, i.e., of the random error.
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Interestingly, the within-group mean square MSW is an unbiased estimator of σ  
2 regardless 

of whether or not H0 is true, which is reasonable.

Under the assumption that each of the h groups can be modeled as a normal distribution, it 
can be shown that:
                                

                                is distributed as Fh-1,N-h
                                   

If the alternative hypothesis, H1, is true, the expected value of F0 numerator is higher than 
that of the denominator.

Consequently, H0 should be rejected if the realization of F0 is larger than the critical value. 
This implies the consideration of an upper-tail (one tail) critical region, i.e., the 
consideration of a Fh-1, N-h,(1-α) as critical value.

W
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0.8As an example, let us consider 
the F4,30 distribution:

If α = 0.05, the critical value 
corresponds to 2.69.

Consequently, if F0 < 2.69, H0 
is accepted at a 5% 
significance level.

rejectionacceptance

Note that the same test can be made also using the P-Value, which corresponds to the area 
underlying the F curve, as calculated from the value assumed by F0 to infinity. 

If P-value > α H0 is accepted, if P-value < α H0 is rejected.



The typical format of an ANOVA table provided by a statistical software is:

Source  of 
variation

SS df MS F ratio P value Fcritical

Between
groups

SSB h-1 MSB Tail area 
from F0

to infinity
Fh-1, N-h, (1-α )

Within groups SSW N-h MSW

Total SST N-1
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Fixed versus Random Factors in the Analysis of Variance

In the preceding sections the standard analysis of variance (ANOVA) for a single-factor 
experiment was discussed by assuming that the factor was a fixed factor. The term “fixed 
factor” means that the levels of the factor of interest could be set appropriately during the 
experiment. 

Sometimes the levels of a factor are selected at random from a large (theoretically infinite) 
population of values. This leads to the random-effects ANOVA model.

The model can be formally expressed as before:

However, the treatment effects, αi, are random variables, assumed to be normally and 
independently distributed, with mean zero and variance σα

2.

The variance of an observation can be then expressed as:

Xij =  µ + αi + εij 

V(Xij) =  V(µ + αi + εij) = V(αi) + V(εij) = σα
2 + σ2



All of the computations in the random effect model are the same as in the fixed effect 
model, but since an entire population of treatments is studied, it does not make much sense 
to formulate hypotheses about the individual factor levels selected in the experiment. 

Instead, the following hypotheses about the variance of the treatment effects are tested:

H0: σα
2 = 0

H1: σα
2 > 0

The test statistic for these hypotheses is the usual F-ratio: MSTreatments/MSError. 

If the null hypothesis is accepted there is no significant variability in the population of 
treatments (i.e., related to the random factor), while if the null hypothesis is rejected there 
is a significant variability among the treatments in the population that was sampled. 

Notice that the conclusions of ANOVA extend to the entire population of treatments.



The expected mean squares in the random model are different from their counterparts in 
the fixed effects model. It can be shown that:

E(MSTreatments) = σ 2 + n σα2 

E(MSError) = σ 2 

Frequently, the goal of an experiment involving random factors is to estimate the variance 
components. 

A logical way to do this is to equate the expected values of the mean squares to their 
observed values and solve the resulting equations. This leads to:

)
n

MSEMSE ErrorTreatments )((2 −
=ασ

)(2
ErrorMSE=σ



Examples of ANOVA applications

1) Tensile strength of paper

A manufacturer of paper used for making grocery bags is interested in improving the 
tensile strength of the product. Product engineers think that tensile strength is a function 
of the hardwood concentration in the pulp and that the range of hardwood concentrations 
of practical interest is between 5% and 20%. 

A team of engineers responsible for the study decides to investigate four levels of 
hardwood concentration: 5%, 10%, 15%, and 20%. 
They decide to make up six test specimens at each concentration level, using a pilot plant. 
All 24 specimens are tested on a laboratory tensile tester, in random order. 

The data obtained from this experiment are shown in the following table:



This is an example of a completely randomized single-factor experiment with four levels 
of the factor. 

The role of randomization in this experiment is extremely important. By randomizing the 
order of the 24 runs, the effect of any nuisance variable that may influence the observed 
tensile strength is approximately balanced out.

An example of nuisance variable could be a warm-up effect on the tensile strength testing 
machine, leading to increasing values with operating time.

If all 24 runs were made in order of increasing hardwood concentration (that is, all six 5% 
concentration specimens were tested first, followed by all six 10% concentration 
specimens, etc.), then the observed differences in tensile strength might also be due to 
the warm-up effect.

A Box-and-Whisker plot can be adopted to represent data in a useful way.



The figure suggests that changing the 
hardwood concentration has an effect on 
tensile strength; specifically, higher 
hardwood concentrations produce higher 
observed tensile strengths. 

Furthermore, the distribution of tensile 
strength at a particular hardwood level is 
generally not very asymmetric, and the 
variability in tensile strength does not seem 
to change dramatically as the hardwood 
concentration changes.

A comparison between variances can be 
made preliminarily to confirm this 
hypothesis.



As shown before, the Minitab 18 software can be exploited to compare variances. They can 
be selected by accessing the “Test for equal variances” option in the Stat > ANOVA> menu.

As an example, the Bartlett test, assuming a normal distribution for data in each group, 
indicates a p-value 0.769, thus suggesting that no significant difference is present between 
the variances.
The Levene’s test is consistent, giving a p-value 0.623. 

The Minitab 18’s plot reporting confidence intervals for standard deviations of different
groups, emphasizes the fact that an overlap occurs between them:



Manual ANOVA calculations
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MSTreatments = 382.79/3 = 127.597 MSError = 130.17/20 = 6.508

F0 = 127.597/6.508 = 19.61  

Since the critical value for α = 0.01 is F3,20 (0.99) = 4.94, H0 should be rejected, thus the sample
means differ significantly. This can be inferred also from the P-value, which is 3.59 × 10-6.



ANOVA calculations with the Minitab 18 software

In the worksheet different factors 
(treatments) are represented by different 
columns, whereas levels (replicates) are 
represented by different rows.



Different options (in the present case 
variances are assumed to be equal, based 
on the comparison of variances) and 
graphical representations of results can 
be selected.





2) Stability of a fluorescent reagent stored under different conditions

Table of data:

Mean squares can be calculated according to the first definition:

MSB = 62

MSW = 3

Since F0 = 62/3 = 20.7 and the critical value is 4.066 (α = 0.05), H0 should be rejected, thus
the sample means differ significantly.



Minitab 18 output

Note that the P value in the ANOVA table, rounded off to the third decimal place, is 0.



3) Example of ANOVA with a random-effect factor: purity testing of a barrel of sodium 
chloride.

The following values were obtained after replicating four times the purity testing on five 
samples of sodium chloride taken from different parts of a barrel, chosen at random:

In this case two possible sources of variation can be hypothesized for the observed purity:

1) random error in the measurement of purity, given by the measurement variance σ2

2) variations in the sodium chloride purity at different points in the barrel, accounted for 
by sampling variance, corresponding to σα

2 defined before.



These are the results obtained from ANOVA calculations:

As apparent, since the realization of the F statistic, 30, is much higher than the critical 
value (3.056), a significant difference exists between the purity of the different samples.

It is worth recalling that in this case the expected value for the between-sample-mean 
square is given by:

 

Consequently, considering that σ2 corresponds to MSw, the following calculation can be 
made to obtain an estimate of the sampling variance:

σα
2 = (E(MSB) – σ2)/n = (1.96 - 0.0653)/4 = 0.47

𝐸𝐸(𝑀𝑀𝑆𝑆𝐵𝐵) = 𝜎𝜎2 + 𝑛𝑛𝜎𝜎𝑎𝑎2



4) Example of ANOVA with a complete evaluation of assumptions

Let us reconsider the set of 65 (5 replicates obtained by each of 13 groups) enthalpy 
variations (kJ/mol) values measured for the neutralization of NaOH with HCl:

Group x1 x2 x3 x4 x5 x s2

1 56.9 59.2 56.3 58.0 56.9 57.46 1.32

2 53.8 55.4 58.0 59.6 55.5 56.46 5.34

3 58.4 55.0 55.7 56.6 57.2 56.58 1.74

4 58.0 56.4 57.6 57.5 55.0 56.90 1.48

5 57.7 58.5 58.9 57.8 57.4 58.06 0.38

6 54.8 56.4 55.2 60.3 57.1 56.76 4.76

7 57.1 60.4 58.9 55.5 54.7 57.32 5.55

8 58.6 57.8 58.0 55.5 55.6 57.10 2.09

9 58.9 59.8 60.0 57.1 56.4 58.44 2.61

10 59.5 57.7 60.0 57.6 56.8 58.32 1.86

11 57.2 58.2 57.4 55.7 59.1 57.52 1.60

12 55.4 56.1 57.7 56.9 59.2 57.06 2.17

13 55.1 56.8 55.7 61.6 58.3 57.50 6.74



As a first step, the overall normality of data can be assessed. A 
histogram of data, accompanied by a gaussian fit, can be 
generated for a preliminary evaluation.

In the Minitab 18 software, the graph can be drawn by accessing 
the Graph > Histogram… path and then selecting the With fit 
option:
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In this case a gaussian probability density function with mean = 57.34 and standard 
deviation = 1.651 seems to fit experimental data appropriately.



The test for normality can be also performed using Minitab 18 , by accessing the Normality 
Test… option in the Stat > Basic Statistics menu. The Kolmogorov-Smirnov test is available, 
among others.



If dots are closed to the red line, as in this case, data are likely to be distributed according to 
a Gaussian function at a 5% significance. This outcome is confirmed, in mathematical terms, 
by the fact that the P-value in this case is greater than 0.150.

In the case of Minitab 18 the 
Kolmogorov-Smirnov (KS) plot is 
linearized by using an 
appropriate vertical scale.

Dots correspond to steps in the 
typical KS plots, whereas the red 
line correspond to the sigmoidal 
curve for the theoretical normal 
cumulative distribution function.



The ANOVA table generated by the Minitab 18 software shows a relatively low value for the 
F-Value (the name used for F0 in the program), leading to a p-value of 0.755:

As a consequence, no significant difference can be inferred between the 13 groups of data 
in terms of mean values.

As for variances, the Bartlett’s test provides a p-value of 0.485, whereas the Levene’s test 
provides a p-value 0.770, thus indicating that variances related to the 13 groups of data are 
not significant different.
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