Multiple Comparison Methods for Means (MCMs)

When the overall null hypothesis in ANOVA:

Hy: W =Hy = = W =0 = My
is rejected, at least two means could differ significantly.

Multiple Comparison Methods for Means are designed to investigate differences existing
between specific pairs of means in a group.

The t-test is a typical example of a method investigating the difference existing between two
means. When it is applied to several couples of means using always the same level of
significance, a, the latter is called per-comparison level of significance or per-comparison
(Type |) error rate (PCER).

As demonstrated before, the problem with the application of a per-comparison approach to
multiple comparisons is the possible inflation of the overall probability of Type | error or
(equivalently) the possible deflation of the overall confidence level (1-a).



As shown previously, if every pair of h means had to be tested, a total of C = h(h-1)/2 t-tests,
each at a significance level a, would be required.

The probability of finding at least one erroneous difference would then be:

As an example, for h = 3 it would result: C=3 and o,; =1 —(1-0.05)°> = 0.143.
If h =10, then C=45and a,s =1—(1-0.05)* =0.901!

Thus, o approaches unity already for 10 means under comparison.

In other words, insisting on performing many pairwise comparisons, each at a per-
comparison level of significance o, would almost certainly lead to conclude that two of the
treatments are different even though they are not.

In statistical nomenclature a family is a collection of inferences for which it is meaningful to
consider an overall measure of error.

In the specific case, the collection of all possible pairwise comparisons is a family (containing
C elements) and the probability of encountering at least one Type | error, o, represents the
overall measure of errors.



o, is an example of family-wise error rate (FWER), generally indicated as o,

Once a FWER is specified, the researcher must be careful to choose a multiple comparison
method able to guarantee that error rate under all possible configurations of the population
means.

Multiple Comparison Methods are statistical procedures usually designed to take into
account and control the inflation of the overall probability of Type | error, i.e., designed to
maintain a specified o, level regardless of how many pairs of means are compared.

Some of the most common MCMs for means, namely:

v’ Fisher-Hayter test

v’ Tukey test (equal group sizes)

v Tukey-Kramer test (unequal groups sizes)

v’ Bonferroni test

v" Duncan multiple range test

v" Dunnett test (for the comparison of several means with a control mean)

will be described in the following slides, after describing one of the first tests devised for the
multiple comparison of means, the Fisher’s Least Significant Difference (LSD) test, that is
important from an historical point of view, although it does not account for the inflation of
Type | error probability.



Fisher Least Significant Difference (LSD) test

The LSD test, developed by Ronald Fisher in 1935, begins by testing the overall null
hypothesis (i.e., means are not statistically different) by ANOVA and, if it is rejected, moves
to the next step.

On succeeding steps, the null hypothesis is tested for each couple of means, i.e., a number
of h(h-1)/2 t-tests at a per-comparison level of significance o is performed to see which pair
of means can be considered different.

The main idea of the LSD test is to compute the least significant difference between two
means and to declare significant any difference larger than the LSD.

The rationale behind the LSD technique value comes from the observation that, when the
null hypothesis is true (i.e., the two means are not significantly different), the value of the t
statistics evaluating the difference between, for instance, means related to Groups 1 and 2
of observations (n; and n, data, respectively) is equal to:

t = 1 2

ms,. [ L1
n,n,

This statistic follows a t distribution with N-h degrees of freedom, with MS
mean square calculated during the ANOVA procedure.

being the

error



The ratio t is thus declared significant, at a given significance level q, if it is larger than the
critical value, denoted as t ;) 11.4/2) -

Rewriting this ratio shows that a difference between the means of Group 1 and 2 will be
significant if:

g 7 1 1
X1 — X3| 2 LSD = ty_p,1-as2 [MSgrror (— + —)
np n;

When there is an equal number of observation per group (n), the above equation can be
simplified as:

2
LSD = tnN—n, 1-a/2 MSgrror (%)

In order to evaluate the difference between the means of Groups 1 and 2, the absolute
value of the difference between the means is then calculated and compared to the value
of LSD.

The procedure is then repeated for all the h(h-1)/2 comparisons.



Modified LSD (MLSD) or Fisher-Hayter procedure

By definition, the LSD test does not correct for multiple comparisons, thus inflating Type |
error (i.e., finding a difference when it does not actually exist).

As a consequence, a revised version of the LSD test was proposed by Hayter (and then it is

known as the Fisher-Hayter procedure), in which a modified LSD (MLSD) is computed using
the Studentized range distribution g:

MS; 1 1
MLSD = qgn-1,) \/ 27‘7‘07" <n1 * le)

where g, ) is the a-level critical value of the Studentized range distribution depending
on indexes h-1 and v = N-h.

The expression of MLSD can be simplified if n; = n,:

M SError

MLSD = da(h-1,v) n



The Studentized range distribution is a continuous probability distribution that arises when
estimating the range of data extracted from a normally distributed population in situations
where the sample size is small, and population standard deviation is unknown.

Suppose that we take a sample of size n from each of k populations with the same normal
distribution N(u,c) and that ¥min and ¥max represent the smallest and the largest of the
sample means, respectively, whereas S? is the pooled sample variance from these samples.
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Tables of critical values for the Studentized Range distribution are available:

Critical Values of Studentized Range Distribution(q) for Familywise ALPHA = .05.
Denominator Number of Groups (a.K.a. Treatments)
DF 3 4 5 6 7 8 9 10
1 26.976 32.819 37.081 40407 43,118 45397 47.356 49,070
2 8.331 9.798 10.881 11.734 12.434 13027 13538 13.987
3 5910 6.825 7.502 B.037 8478 B.852 9.177 9.462
4 5.040 5.757 6.287 6.706 7.053 7.347 7.602 7.826
5 4.602 5.218 5.673 6,033 6.330 6.582 6.801 6.995
6 4.339 4.896 5.305 5629 5.895 6.122 6.319 6.493
T 4.163 4.681 5.060 5.359 5.606 5815 5997 6.158
] 4.041 4.529 4.886 5.167 5.399 5.59 5.767 59138
9 35948 4415 4.755 5.024 5.244 5.432 5.595 5.738
10 3.877 4.327 4.654 4912 5.124 5.304 5.460 5.598
11 3.820 4.256 4.574 4.823 5.028 5.202 5353 5.486
12 3.773 4.199 4.508 4.748 4.947 5116 5.262 5.395
13 3.734 4.151 4.453 4.690 4 884 5.049 5.192 5318
14 3.701 4.111 4.407 4.639 4.829 4.990 5.130 5.253
15 3.673 4.076 4.367 4.595 4.782 4.940 5077 5.198
16 3.649 4.046 4.333 4.557 4.741 4 896 5.031 5.150
17 3628 4.020 4.303 4,524 4.705 4,858 4.991 5.108
18 3.609 3.997 4.276 4.494 4.673 4824 4,955 5071
19 3.503 3977 4.253 4.468 4.645 4.794 4.924 5.037
20 3.578 3958 4.232 4.445 4.620 4.768 4 895 5.008
21 3.565 3.942 4213 4424 4.597 4.743 4870 4.981
22 3.553 3.927 4.196 4405 4.577 4722 4.847 4.957
3 3.542 3914 4.180 4.388 4.558 4.702 4.826 4.935
24 3.532 3.901 4.166 4373 4.541 4,684 4 807 4915
25 3.523 3.890 4.153 4.358 4.526 4.667 4.789 4.897
26 3514 3.880 4.141 4.345 4.511 4.652 4.773 4.880
27 3.506 3.870 4.130 4.333 4.498 4,638 4,758 4.864
28 3.499 3.861 4.120 4.322 4.486 4.625 4.745 4.850
29 3.493 3.853 4.111 4.311 4475 4613 4.732 4.837
30 3.487 3.845 4.102 4.301 4.464 4.601 4.720 4.824




Exercise on Fisher and Fisher-Hayter Least Significant Difference (LSD/MLSD) tests

Let us reconsider the following dataset, for which MS

presence of a significant variability between groups:

= 3 and ANOVA showed the

Error

SUMMARY
Groups Count Sum Average Variance
A 3 303 101 1
B 3 306 102 3
C 3 291 97 4
D 3 276 92 4
Mean values can be arranged in increasing order:

In this case LSD = [(3) x (2/3)]Y2 x tg 475 = 3.26 (o = 0.05).

Comparing this value with the differences between the means suggests that Groups D and
C give results differing significantly from each other (5 > 3.26) and from the results
obtained for Groups A and B (differences equal to 4, 5, 9 and 10, according to the case).
Groups A and B (difference equal to 1) do not differ significantly from each other.



As shown by the table of critical values of the Studentized range distribution g, reported
before, the critical value to use for a MLLSD test on the same data would be 4.041.

Indeed, in the specific case n =12 and h = 4, thus DF = n - h = 8 and the distribution with k
=h-1=3and DF = 8 has to be considered.

Since 4.041 > 4, the means of Groups C and A cannot be considered significantly different
from each other if the MLSD test is used instead of the LSD one.

Generally speaking, the MLSD procedure is more conservative than the LSD one, i.e., it
provides a lower number of significant differences for the same data.



Tukey test

The Tukey test, also called Tukey Honestly Significant Difference (HSD) test is a single step
MCM whose Family-Wise Error Rate (FWER) for a family of C = h(h-1)/2 comparisons is
exactly a. It was introduced by John Tukey in 1949.

The Tukey test is optimal in the sense that, among all procedures that give equal-width
confidence intervals for all pairwise differences with a familywise confidence level at least
(1- o), it provides the shortest intervals.

In other words, if the family consists of all pairwise comparisons and the Tukey test can be
used, it will have shorter confidence intervals than any of the other single-step MCMs.

Tukey’s test declares two means ; and ; significantly different if the absolute value of the
difference between their estimates exceeds a critical value related to the Studentized range
distribution with h, N-h degrees of freedom:

M S Error

n



Given a FWER of a, the Tukey confidence interval for (; - p;) is thus given by:

MS

Error j # ]

()?i o A_/j )i (o)

Notably, all Tukey confidence intervals will have the same width since the latter depends
on the total number of means h and on the common sample size, n, so it is not affected
by the number of comparisons in the family.

The limitation of the Tukey’s test is that it requires a balanced design (i.e., n; =n, = ..... =
n, =n).

For unbalanced designs a simple modification, corresponding to the Tukey-Kramer test, is
required.



Tukey-Kramer test

The Tukey-Kramer test arose from a modification to the Tukey test introduced in 1956 by
the American statistician Clyde Kramer.

It is based on the confidence interval for (u; - p;) expressed as:

MS Error 1 1 _
+ with v = N-h

2 n;, n;

(Z— - /?,f )J—r 9ec(hv)

Notably, if the modified LSD:

MS; 1 1
MLSD = Aa(h—1,v) eror <n1 * nz)

is considered and the variation of q values with the number of groups is evaluated from the
table reported before, it can be seen that q,, ) > G441, This means that the Tukey-Kramer
test might lead to a lower number of significant differences between means than the
modified Fisher-Hayter test.



Bonferroni test
The Bonferroni test was developed by the Italian mathematician Carlo Emilio Bonferroni in
1935 and consists in performing a t-test for each pair of means but accounting for the

number, ¢, of pairwise comparisons.

This approach compensates for the increase in Type | error occurring when multiple
pairwise comparisons between means are performed.

Indeed, the maximum familywise error rate, FWER, is a for any configuration of the
populations means.

Given a FWER = a, the Bonferroni confidence interval for (u; - 1) is given by:

J o= U Error

(fi—f.)if MS %““L with v = N-h

where a* = (o/c).



Duncan multiple range test

The Duncan multiple range test was developed by David B.
Duncan in 1955 to increase the protection against Type Il error.

To apply Duncan multiple range test for equal sample sizes (n) MS
the averages of the h treatments are arranged in ascending Sy — Lrror
order, and the standard error of each average is determined as: ! n

Duncan’s table of significant range coefficients, shown in the next slide, is then considered
to obtain values r (p,f) for p = 2,3,....,h where a is the significance level and f = N-h is the
number of degrees of freedom.

The coefficients are subsequently converted into a set of h-1 significance ranges R for p =
2,3,..., h, by calculating:

Rp=l’a(p,f)Syi for p=2,3,....,h

The differences observed between means are then tested, beginning with the difference
between the largest and the smallest mean, which is compared with the R, value obtained
for p = h (indicated as R,).



Table of significant ranges for Duncan’s Multiple Range Test

To.ostps f)
P

f 2 3 q 5 6 7 # 9 11 0 0 100

1 18.0 180 18.0 18.0 18.0 15.0 18.0 18.0 18.0 I18.0 18.0 18.0
2 .09 .09 609 &.09 6,09 6.09 .09 £.09 6.09 600 6.09 £.00
3 4.50 4 50} 4.50 4.50 4.50 4 50 4,50 4.50 4.50 4 5() 4,50 4.50
4 3.93 4.01 4.02 4.02 4,02 4.02 4.02 402 4.02 4.02 4,02 402
5 3.64 374 3.79 .83 3R3 383 353 383 .83 383 183 3.83
] .46 3.5% 164 .68 168 168 .68 168 3168 368 168 168
7 3.35 3.47 1.54 15 360 .61 3nl 36l .61 1.6l jinl 1.6
H 126 3,39 147 152 3.55 1,56 3.56 3.56 1,56 31,56 ] 356
0 120 3.34 141 347 3.50 3.52 3,52 3.52 3.52 152 3.52 352
{H} 31.15 3130 31.37 343 146 347 147 147 3.47 348 348 348
11 3.11 3.27 31.35 339 143 344 3.45 346 1456 3.48 348 3.48
12 108 13 333 336 3.440 342 1.44 344 3.45 148 3.48 348
13 306 3.21 3.30 3.35 3.38 3.41 342 344 3.45 347 347 147
14 303 318 3,27 3.33 3.37 3.39 141 3.42 3.44 147 3.47 147
15 3.01 316 3.25 31.31 136 3.38 3,40 3.42 3.43 347 347 3147
16 3.00 3.15 3.23 3,30 3.34 3.37 3,30 341 3.43 347 347 347
17 298 313 3.22 128 3.33 1.36 3.38 3.40 342 3.47 347 147
18 297 3.12 321 327 332 31,35 337 1,39 341 347 3.47 347
19 296 111 3.19 1.26 131 31.35 3 139 341 147 3.47 347
20 295 3.10 1.18 125 3,30 134 3.36 338 3.40 147 3.47 1.47
1] 289 104 312 3.20 1.25 3.20 3.32 1,35 3.37 347 1.47 3147
40 2.86 30 3.10 317 1,22 3.27 3.30 3.33 3.35 1.47 147 31.47
&0 2.83 2.08 308 314 3.20 324 328 3.31 333 147 3.4% 148
100 2EQ 2.95 i0s 312 118 3.22 3.6 3.29 3.32 3147 353 353
& 277 2.92 3.02 3.09 1.15 e 3123 3.26 3.29 147 161 3.67




The procedure is subsequently repeated for the difference between the largest and the
second smallest mean, which is compared to the R, , value.

The test proceeds with the same logic, until all means have been compared with the largest
mean.

If an observed difference is greater than the corresponding least significant range the two
means under evaluation can be considered significantly different.



Dunnett test for comparisons with a control

In many experiments one of the treatments (whose number is indicated as a) is a control,
and the analyst is interested in comparing each of the other a-1 treatment means with the
one of control.

In 1964 the Canadian statistician Charles Dunnett developed a procedure to make such

comparisons.
Let us suppose that treatment a is the control, thus the hypotheses under test are:

Hﬂ:.\u't' = Mg
Hl:lu’i * Mg
fori=1,2,...,a-1.

The observed differences in the sample means are computed for each i value:
|?!:+_ﬁﬂ.| E=l,2,-..,ﬂ_1

The null hypothesis H, is rejected, with a type | error rate o, if:

1
.-f:'. - ?ﬂ.l > dcx(a - l,f)JMSE(Ll— -+ —)

R; Rg

where the d, (a-1, f) value is provided by the table shown in the next slide:



Table of critical values for Dunnett’s Test for a = 0.05 (two-sided comparisons)

a — 1 = Number of Treatment Means (excluding control)

f 1 2 3 4 5 0 7 8 9
5 2.57 3.03 3.29 348 3.62 3.73 3.82 3.90 3.97
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71
7 2.36 2.75 2.97 3.12 3.24 3.33 341 347 3.53
8 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32

10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24

11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19

12 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14

13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10

14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07

15 2.13 244 2.61 2.73 2.82 2.89 2.95 3.00 3.04

16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02

17 2.11 241 2.58 2.69 2.78 2.85 2.90 2.95 3.00

18 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98

19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96

20 2.09 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95

24 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90

30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86

40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81

60 2.00 2.27 241 2.51 2.58 2.64 2.69 2.73 2.77

120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73
o 1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69




Application of different tests for multiple comparison of means

1) Effect of the percent of cotton on the tensile strength of a synthetic fiber

An engineer decides to test for tensile strength specimens of a synthetic fiber containing
one of five different levels of cotton weight percent: 15, 20, 25, 30 and 35%.

In this case h =5 and n = 5 and the 25 measurements of tensile strength are performed in
random order.

The resulting data are:

. Observed Tensile Strength
Weight (Ibfin®)
Percentage Totals Averages
of Cotton 1 2 3 4 5 W yi.
15 7 7 15 11 9 49 9.8
20 12 17 12 18 18 77 154
25 14 18 18 19 19 88 17.6
30 19 25 22 19 23 108 21.6
35 7 10 11 15 11 54 10.8
y. = 376 y. = 15.04




The results of ANOVA are the following:

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fy P-Value
Cotton weight percentage 475.76 4 118.94 F, = 1476 <0.01
Error 161.20 20 8.06
Total 636.96 24

The F, value is high enough to lead to a p-value lower than 0.01, which means that some
significant differences exist between the different groups of samples, i.e., the cotton
percentage has some influence on the observed tensile strength.

Different tests can then be performed to understand which means differ from each other.



1a) Tukey test

The Tukey’s test can be used since the numbers of data in each group are the same.
For oo = 0.05 the critical value for the test is:

T[L[)j = q.;.ﬂj(ﬁ, 20) ’MTSE = 4,23 ? = 5.37

Thus, significant differences would be inferred for any pair of groups means differing in
absolute value by more than 5.37.

As shown in the table, six pairs of means, ~ —
indicated by an asterisk, are found to be i~ Y. = 98— 154 = =56%
significant different: V. — V.= 98 —-176 = -—7.8*
Vi.— V¢ = 98 — 216 = —11.8*
?1. - ?5_ = 98- 108= —-1.0
Vo — V3. = 154 — 176 = =22
Vo — V4. = 154 — 216 = —6.2%
Y. — 9. =154 — 108 = 46
Vi — ¥, =176 — 216 = —40
yi. — ¥s. = 176 — 10.8 =  6.8%
[}4. —ys. =216 — 108 = ]O.S’J




1b) Fisher LSD test

For oo = 0.05 the critical value for the Fisher LSD test is:

2M 2(8.06
LSD = {{}2512[) % = 2.086 ( 5 ) = 3.75

Thus, significant differences would be inferred for any pair of groups means differing in
absolute value by more than 3.75.

e ——————————
As apparent from the table, eight pairs of Yi. = Y. = 98 — 154 = -—-5.6%
;near(;lsJE igdic.ate.(;l. byt Zr\ffaste:sk, are now V.~ V.= 98 —17.6 = —7.8%
ound to be significant different: jl. — .= 98 — 216 = —11.8”2
Calculations confirm that Tukey’s test is more Y.~ ¥. = 98 — 108 = —1.0
conservative than the Fisher LSD one, i.e., it Vo — Vs, = 154 — 176 = =22
Ie_ad_s_ to e_vidence a lower number of f?z. — J, = 154 — 216 = —6.2’9
significant differences between means. T "

yz_ - :)]'5\‘ = 15.4 - 10..8 = 4.6*

Vi — Vo = 176 — 21.6 = —4.0%

y3. — ¥5. = 17.6 — 10.8 =  6.8*

g_.q, — ¥s. = 21.6 — 10.8 = 10.8’1




1c) Duncan multiple range test

In this case the group means must be first arranged in ascending order: .= 98

ys. = 10.8
The following values need to be used: Zz. = b4
MS; =8.06, N=25,h=5,n=5 ys. = 21.6

The standard error of each average is then:

Sy, = /MSET =1.27

In this case f = N-h = 20, thus the following values are extracted from Duncan’s table:

ro05(2, 20) = 2.95, 1y 4s(3, 20) = 3.10, 1y oc(4, 20) = 3.18 and r, c(5, 20) = 3.25

The least significant ranges are: Ry = roos(2, 2008;, = (2.95)(1.27) = 3.75

R; = ryos(3, 20)S5, = (3.10)(1.27) = 3.94
= roos(4, 20)85, = (3.18)(1.27) = 4.04
Rs = rp0s(5, 20)S5, = (3.25)(1.27) = 4.13

=
N
I



The tests are subsequently performed in the following order:

the largest minus the smallest, the largest minus the second smallest and then up to the
largest minus the second largest; then the second largest minus the smallest, the second
largest minus the second smallest, and so on, finishing with the second smallest minus the

smallest.
4vs. 1:21.6 — 9.8 = 11.8 > 4.13(Rs) largest minus the smallest
4 vs. 5:21.6 — 10.8 = 10.8 > 4.04(R,) largest minus the second smallest
4vs.2:21.6 — 154 = 6.2 > 3.94(R3) o
4vs.3:216 — 176 = 4.0 > 3.75(R2) largest minus the second largest
3vs.1:176 — 98 = 7.8 > 4.04(R,) secondlargest minusthe smallest
3vs.5:17.6 — 10.8 = 6.8 > 3.95(R;) second largest minus second smallest
3vs.2:17.6 — 154 = 22 < 3.75(R2_)]
2vs. 1: 154 — 9.8 = 5.6 > 3.94(R») '
2vs. 5: 154 — 108 = 4.6 > 375(R,) ’
S5vs. 1: 108 — 98 = 10< 3.75(R2) second smallest minus the smallest.

As a result, there are significant differences between all pairs of means except 3 vs 2 and 5

vs 1.

Consequently, the Duncan’s multiple range test and the LSD test produce identical

conclusions.




1d) Dunnett test

Since the Dunnett’s test was developed to compare group means with the one obtained for
a control, the group represented by the synthetic fiber containing 35% of cotton will be
supposed to represent the control.

According to the Dunnett’s test nomenclature, a = 5 and f = 20, thus the critical difference,
for a = 0.05, can be calculated as follows (note that in this case each group includes the
same number of data):

2MS 12(8.06
da(ﬂ - l,f)\/MSE(;Il_ + Hl) = dgﬂﬁ(‘l‘, 20) ﬂ,‘ £ = 2.65 ( 5 ) = 4.76

Thus, any group mean that differs from the control by more than 4.76 can be declared
significantly different from the control.

The observed differences are: 1 vs. 5.y, — s, 98 — 108 = —1.0
2vs. 5.y, —y5. =154 — 108 = 4.6

3vs.5:y;, — 95, =176 — 10.8 = 6.8%

[4 vs. 5: Yy — V5, = 21.6 — 10.8 = 10.8*]

Consequently, only means of groups 3 and 4 differ from that of the control group.



Use of Minitab 18 for multiple comparison of means

Let us reconsider the data set relevant to the
tensile strength of paper as a function of hardwood
percentages, with four percentages considered (5,
10, 15 and 20%) and six replicated measurements
made randomly for each percentage:

One-Way Analysis of Variance: Comparisons X

Error rate for comparisons: | 5

Comparison procedures assuming equal variances

v Tukey
v Fisher
I+ Dunnett
Control group level: |'2D' ﬂ
[~ Hsu MCB
Best: |Largest mean is best J

Results

I+ Interval plot for differences of means
v Grouping information

Help oK Cancel ‘

[ ] Worksheet 1 #**
' Ci c2 C3 c4 C5
5 10 15 20

1 7 12 14 19
2 8 17 18 25
3 15 13 19 22
4 11 18 17 23
5 9 19 16 18
6 10 15 18 20
7

8

The option “Comparisons” in the One-Way ANOVA
menu of the Minitab 18 software covers four of the
multiple comparisons of means described so far:
Tukey (or Tukey-Kramer), Fisher and Dunnett.

In the case of Dunnett’s test a control group has to
be specified (in the example the group related to a
20% hardwood percentage has been indicated).



In the case of the Tukey test Minitab shows
confidence intervals for all the possible
differences of means.

When a specific interval does not include
the O value a significant difference is
inferred between the corresponding
means.

In the “Session” window of the Minitab
software a table is reported after the Tukey
test, with capital letters indicating which
means can be grouped together, since a
not significant difference has been found
between them (in the specific case means
of tensile strength for paper samples
containing 10 and 15% of hardwood).

' Tukey Simultaneous 95% Cls =N R %"

Tukey Simultaneous 95% Cls
Difference of Means for 5; 10; ...

10-5 i | .
1

1
15 - 5-| i } * f
1

1
20-5- ! | .
.

15 - 10 [ : . I

|
20 - 10| | } .
1

1
20 - 15 ! .
V

-5 0 5 10 15

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence
Factor N Mean Grouping

20 6 2117 A

15 & 17.000 B

10 & 1567 B

5 & 10.00 C

Means that do not share a letter are significantly different.




A similar approach is adopted for the Fisher LSD test.

Notably, the Fisher confidence intervals are narrower than those of the Tukey’s test, thus the
observation of significant differences is more likely.

" Fisher Individual 95% Cls E@

Fisher Individual 95% Cls
Difference of Means for 5; 10; ...

10-5- i [ - !

|
15-5- i f o f
1

1
20-5- ! } * |
|

15-10- | ; . |

|
20 - 10 | | . |
1

1
20-15-| ! f . |
1

If an interval does not contain zero, the corresponding means are significantly different.

Fisher Pairwise Comparisons

Grouping Information Using the Fisher LSD Method and 95% Confidence
Factor N Mean Grouping

20 & 2107 A

15 & 17.000 B

10 & 1567 B

3 6 10.00 C




When the Dunnett’s test is performed the
confidence intervals for differences
between group means and the control
mean are reported.

If intervals do not include the 0 value a
significant difference with the control
mean can be inferred.

In the summary table group means
eventually not differing from the control
one would be classified with the same
letter as the control.

This was not the case in the specific
example.

" Dunnett Simultaneous 95% Cls

= el

Dunnett Simultaneous 95% Cls
Level Mean - Control Mean for 5; 10; ...

10 - 20

15 - 20

16

control mean.

-4 2 -0 -8 5 -4

If an interval does not contain zero, the corresponding mean i significantly different from the

Dunnett Multiple Comparisons with a Control

Grouping Information Using the Dunnett Method and 95% Confidence

Factor

N Mean Grouping

20 (control)
15

10

3

6 2117 A
6 17.000
6 1567
6  10.00




Multiple comparison between means using non-parametric methods

As other statistical procedures, even the multiple comparison between means can be
performed using non-parametric (also called distribution-free) methods, i.e., methods that
make no assumption about the distribution from which data are taken.

Such tests are useful when the assumption of normality cannot be proved, or it has been
demonstrated to be not true.

An example of them is the Kruskal-Wallis test, developed in 1952 by American statisticians
William Kruskal and Wilson Allen Wallis, whose goal is assessing if at least two of the
medians related to several groups of data differ significantly, thus it is often considered the
nonparametric equivalent of ANOVA, although it can be performed also on groups including
different numbers of data.

As in other non-parametric tests, the ranks of data must be calculated.
In particular, a single ranking is made for data arising from all groups together, i.e., the
ranking is made from 1 to N by ignoring group membership.

Moreover, if present, tied values are assigned ranks corresponding to the average of the
ranks they would have received if they had not been tied.



The general statistic for the Kruskal-Wallis test is:

H = (N —1) Ly ni(Fi —7)°
L1 Dy (rig — T)?

where:

N is the total number of observations
g is the number of groups
n, is the number of observations in group i

r; is the rank (among all observations) of observation j from group i

ng
i1 Tij . : : :
7=1 "% s the average rank of all observations in group i

=
ﬂ:ﬁ-
|

n;

F = %(N +1) is the average of all the r; values



Starting from the general definition of the H statistic:

Zle n; (75 — F)2
>y (rij —7)?

H=(N-1)

it can be seen that when the average rankings referred to different groups are similar, which
implies, indirectly, that observations in the different groups are comparable, the realization
of the H statistic is lower than when the average rankings are not similar.

This explains why the test indicates the presence of a significant difference between the
groups’ medians if the value assumed by H is higher than a critical value.

The latter can be obtained from a y? distribution with g-1 degrees of freedom when N > 15
and each n; is not lower than 5.

Special tables should be used for smaller numbers of measurements.
A source of critical values for the Kruskal-Wallis test can be found on the Internet site:

https://www.dataanalytics.org.uk/critical-values-for-the-kruskal-wallis-test/



?

7 DataAnalytics.org.uk
dil

UNDERSTANDING DATA

Critical values for the Kruskal-Wallis test

Introduction
Approximate values for sample sizes >=5

Exact values for equal sample sizes

> 3 groups

> 4 groups

> 5 groups

> 6 groups

Exact values for unequal sample sizes

> Max group size 1-5
> Max group size 6-9

> Max group size 10-17

Groups =5

Exact critical values for H for five groups of equal size.

Significance level

Sample 5% 2% 1%
size Groups =5

2 7.418 8.073 8.291
3 8.333 9.467 10.200
- 8.685 10130 11.070
] 8.876 10.470 11.570
6 9.002 10.720 11.910
7 9.080 10.870 12140
8 9126 10.990 12.290
9 9166 11.060 12.410

10 9.200 11130 12.500




Use of Minitab 18 to perform the Kruskal-Wallis test

A dlffe rent a.pproaCh has . to be EWorksheeﬂ o JJ'hFi::in::it‘Jt_s::mzalc Stat Graph Editor Tools Window Help Assistant
adopted to input data in the . 1 2 I* CIE] L s s :|09Ju@ mom 0
. . - egression — T

Minitab 18 worksheet before Response| Factor = ANOVA b
. . ‘on DOE »
proceeding to a Kruskal-Wallis test. ‘ ! ° CorolChars ,
2 8 5 Quality Tools »

3 —-I 5 5 Reliability/Survival »

.o . Multivariate »
Specifically, one column is used to 4 11 5 Time Seris b
introduce all response values and 5 J > e [a—

. 6 10 5 uivalence Tests . 1-Sample Wilcoxon..
another to introduce the values of T
. T 12 10 P [y Mann-Whitney...
the factor. In the specific example B 17 10 (e )
. Q. Mood's Median Test..
the factor is the percentage of 9 13 10 1) Ficaman..
hardwood in paper and the || 18 10 E;TA
. . 11 "]9 "]O [ Irwise Averages...
L Pairwise Differences..
response is the tensile strength. - s 0 e
13 14 15
The Kruskal-Wallis test is accessed || 14 18 15 Kruskal-Wallis x |
M H 15 '19 '15 m
fchrough the Nonparametrics section . - . Ci e N
in the Stat menu. = 16 15 Foctor: [Fador
18 18 15
Columns corresponding to the 19 19 20
20 25 20
Response and to the Factor are then o S o
selected. = >3 20
23 18 20 L ookt |
24 20 20 Help | ok | concel




In the Session window the test results are | Kruskal-Wallis Test: Response versus Factor
summarized as a table, in which median and

mean rank values are reported for each Descriptive Statistics

Factor Mo Median Mean RBank  Z-Value

group. 5 6 95 41  -337
10 6 16.0 116  -037
o . 15 6 17.5 136 043
In the specific example mean ranks are quite 0 & 210 508 330
different from each other. Overall - 24 123
. . . Test
As a result, the H-value is quite high and the | _

. Mull hypothesis He: All medians are equal
p-Va|UE, 0.001, very IOW, thus suggesting that Alternative hypothesis  Hy: At least one median is different
a significant difference exists between some Method DF H-Value P-Value

Mot adjusted for ties 3 16.81 0.001
of the groups. Adjusted for ties 3 17.03  0.001

Interestingly, the software calculates also an H-value adjusted for ties, if they occur, using
the following formula:

H(adj) = H In this formula the sum refers to the number of groups of
¥ t!.3 - t; ties occurring in the data series and t; represents the
N3 _N number of ties occurring in each group.




As an exampler two groups of ties can be Observation Rank (assuming no ties) Rank
observed in the dataset shown on the right. 12 1 1
The first group includes two data (thus t; = 2), 4 B o
whereas the second group includes three [ ; .
data (t, = 3). 2.4 '
3.6 4 4
Notably, the correction usually makes little 4.0 5 6
difference in the value of H unless there are 4.0 6 6
many ties. 40 ; .
4.3 8 8
5.3 9 9
Minitab also calculates a Z-value for each group, using the R- R
following formula: £j = :
© \/(N + 1}(% -
The z-value indicates how the average rank for each group 12

compares to the average rank of all observations.



Dunn’s test

If the Kruskal-Wallis test indicates that not all medians are statistically comparable, the
Dunn’s Test, proposed by the American mathematician and statistician Olivia Jean Dunn in
1964, can be employed to determine which medians are significantly different.

Dunn’s Test performs pairwise comparisons between independent groups and indicates
which groups are significantly different at some level of significance a.

The formula to calculate the z statistic for the difference between two groups in the Dunn’s
test is:

z,=y;/ 0
where:
i is one of the 1 to m comparisons

y; =r,—rg is the difference between the average ranks of groups A and B under test

and:

: 3 _
N(N+1) E Ts s ( 1 1 ) where 1, represents the number of ties in the
v sth group of ties (if no ties are present, the
\ sum shown in the formula is equal to 0).




Each z, value (often referred to also a
: Number of groups
as Q value) has to be compared 0,05 o
: - . > 1,960 2,576
with a critical value depending on : i b
the significativity value a, as 4 = i
shown in the table on the right: 6 2,936 3,403
7 3,038 3,494
8 3,124 3,570
9 3,197 3,635
10 3,261 3,692
1 3,317 3,743
12 3,368 3,789
13 3,414 3,830
14 3,456 3,868
15 3,494 3,902
16 3,529 3,935
17 3,562 3,965
18 3,593 3,993
19 3,622 4,019
20 3,649 4,044
21 3,675 4,067
22 3,699 4,089
23 3,722 4,110
24 3,744 4,130
25 3,765 4,149

Notably, the critical values reported in the table arise from the standard normal distribution
after making the Bonferroni correction, i.e., after dividing a by the number of pairwise
comparisons performed with the Dunn’s test.

For example, if 5 groups are considered, a total of 5 * 4 / 2 = 10 comparisons needs be made,
thus a a/10 value has to be used for each comparison. If a. = 0.05, then /10 = 0.005 and the
critical value to be used is z;_ 495/ = Z1_0.0025 = Z0.9975 = 2.807.



An example of Dunn test

The half life of caffeine, expressed in hours, was measured in the blood of individuals from
three groups, namely, 13 men, 9 women not using contraceptives and 9 women using
contraceptives, after the oral assumption of a tablet containing 250 mg of caffeine.

The following results were obtained:

Malas Females Females
(hi = 13) rank no contraceptive rank with contraceptive rank
(n2 = 9) (nz = 9)
2,04 1 5,30 12 10,36 25
5,16 10 7,28 19 13,28 29
6,11 15 8,98 i | 11,81 28
5,82 14 6,59 16 4,54 6
5,41 13 459 8 11,04 26
3,51 - 8,11 11 10,08 24
3,18 2 T 18 14 47 31
4 57 7 3,47 3 9,43 23
4,83 9 7,60 20 13,41 30
11,34 27
3,79 5
9,03 22
7,21 17
Sum of ranks 146 128 222
Mean rank 11,23 1422 2467

In this case the H value calculated for the Kruskal-Wallis test, 12.07, is higher than the
critical value related to a y? distribution with 2 degrees of freedom and a = 0.01, thus a
significant difference exists between at least two of the three groups.



Since no ties were observed between data, the realizations of the Dunn statistic (Q) were
calculated using the simplified equation for o;:

)y (L+L)

12 n4g nNg

Consequently, the following values were obtained:

R —Roee 24,67 -11,23

Q _ contrac — = 3’409
NV+D(_ 1 SR
12 ncan.'rm‘ n males 12 9 13
R —R -
Q _ contrac no_ contrac — 24’67 14’22 =S 2,4—38
NN+ 1 1 lei+hl 1
12 nmn;rm i nm) contrac 12 9 9
R, -R, -
Q _ no_contrac males — 14’22 11’23 = 0,7583

voven( 1 1 ‘/31(31“) .1
n | n i 12 |9 13

no _contrac males

Since the critical value for a = 0.05 and three groups is 2.394, the test shows that the half-
like in blood of caffeine is longer in women assuming contraceptives than in women not
assuming them and in men.
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